
Replacing AGL WindowManager

Daniel Stone
daniels@collabora.com



Open FirstOpen First

Hi, I'm Daniel

Graphics lead at Collabora
Open-source consultancy est. 2005
Wayland core developer



3

Outline and agenda



4

Outline and agenda
● Current WindowManager and HomeScreen APIs
● Comparison with Wayland protocols
● Plan to merge WindowManager into compositor
● Open questions and support



5

WindowManager API



6

WindowManager overview
● WindowManager system service allows external process to 
control window positioning and policy

● Acts as 'proxy' between app and Wayland server
● Provides mapping between AGL app and Wayland IVI 
protocol

● Applies OEM WM/UI policy and tells Wayland server what to 
display

● WM is a critical system process: if it crashes, no new 
content will be shown!



7

Current
WindowManager

design



8

Issues with WindowManager
● WindowManager uses separate protocol (Binder)
● Synchronisation between two protocols required

– create surface with WM surface, get surface ID, give 

surface ID to Wayland server

● Custom integration means it is more difficult to write AGL 

apps!

● Integration of app FW & Wayland main loops required



9

Issues with WindowManager
● WM API duplicates many features available in Wayland 
protocol

● Possible for app/toolkit to receive conflicting messages

– example: active state in xdg_toplevel Wayland interface 

plus WM activated signal

– WM does not control Wayland server: cannot synchronise 

– application and toolkit may 'fight' on conflict



10

Issues with WindowManager
● Many duplicated APIs:
● WM setRole vs. XDG set_app_id
● WM area vs. XDG configure
● WM activateWindow vs. XDG activated
● WM syncDraw vs. wl_surface frame
● WM focus vs. wl_touch focus
● WM Screen vs. wl_output/xdg_output
● WM setRenderOrder vs. wl_subcompositor



11

Issues with WindowManager
● Most duplicated APIs are deficient compared to Wayland
● Wayland APIs allow for dynamic and hotplug situations
● WindowManager APIs are not atomic: does not allow to wait 
until all UI ready, reconfigure & show together 



12

Issues with WindowManager
● Unclear definition of multiple window manager co-operation 
(remoting/multi-ECU case)

● Dynamic output and streaming management not possible
● Security: policy DB can be overridden by client app!
● More difficult to debug: multiple processes, multiple 
protocols



13

Suggested changes



14

Summary of suggested changes
● Remove WindowManager API: replace with Wayland core
● Replace HomeScreen API with integrated Wayland 'shell' 
design

– compositor plugin: policy (e.g. restriction), integrated 

with WM

– client process: UI rendering (e.g. home screen)

– possible to launch HS service securely!



15

Summary of suggested changes
● Implement new agl_xdg_extension Wayland protocol
● Replace HomeScreen API with integrated Wayland 'shell' 
design

– compositor plugin: policy (e.g. restriction), integrated 

with WM

– client process: UI rendering (e.g. home screen)

– possible to launch HS service securely!



16

WindowManager changes #1



17

WindowManager changes #2



18

Layering of Wayland protocols



19

Open questions



20

Open questions: window manager
● Is there an example case for split-application UI?

– e.g. Navi UI provided by process #1, Navi content provided by process #2

– some extension of XDG Wayland protocols required to realise this

– upstream community should be happy to receive change

● Is there an example implementation of window manager 

'policy DB'?
– documented in HMI/WM spec but not present in code



21

Open questions: home screen
● How should the home screen API be designed?

● Current HomeScreen and WindowManager APIs are very 

separate, but depend on each other

● What home screen implementations do we have today?

● Who could help with porting current AGL home screen 

architecture to new design?



22

Open questions: home screen
● HomeScreen architecture appears to duplicate core app-

framework functionality

● Should launching applications and services be part of core 

App FW? (Launching can be required for other uses.)

● Home screen transitions must take care of global vehicle 

state (stop video when gear engaged)



23

Open questions: timeline
● Deprecating WindowManager/HomeScreen apps requires 

change in AGL UCB core, AGL demo UI/HS, AGL demo apps, 

ISV apps …

● What timeline is realistic to make these changes?

● Do OEMs have a requirement for old APIs to remain?
– implementing two services together is technically difficult



24

Open questions: support
● Changing WM/HS API requires support from UI and app 

developers, OEMs shipping AGL
– do we have this support?

● Changing compositor requires support from reference-

platform BSP



25

Next steps
● Continue gathering usecases from OEMs and ISVs

● Publish document listing AGL required Wayland extensions
– XDG shell for clients, Wayland alpha-compositing protocol for blending, etc

● Develop homescreen UI architecture with input from OEMs

● Port reference AGL apps (homescreen, mixer, Navi, etc) to 

new architecture



26

Thankyou!

daniels@collabora.com


