
Creating HTML5 apps for AGL

Lorenzo Tilve / Roger Zanoni
Igalia - AGL F2F @ Panasonic Center Tokyo - 20.10.2022

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Agenda
● About us

● Goals of AGL Web Runtime

● Chromium and Web Application Manager (WAM)

● How to create and debug web applications in AGL

● Status and future plans

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

About Igalia
● Open Source Consultancy with HQ in Galicia, Spain

● Over 120 employees around the world

● Web rendering and browsers experience in Chromium, WebKit, WPE and Firefox,

Compilers, JavaScript engines (V8, JSC), Graphics, Multimedia, Kernel, Accessibility

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Goals of AGL Web Runtime

Provide full Web Platform support into AGL platform

● Not framework specific. Any front-end framework allowed.

● Out-of-the-box compatibility with standard web APIs

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Goals of AGL Web Runtime

● Native-like experience for web-applications

● Smooth integration with V2C services

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Goals of AGL Web Runtime

Potential to reach a big community of developers

● Development tools already available and well known

● Interoperability with other frontend and backend services

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Chromium and WAM
WAM = Web Application Manager

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Chromium and WAM
WAM is the web application runtime for LG Electronics webOS

Open-sourced as part of webOS Open Source Edition

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Chromium and WAM
Built on top of Google Chromium

● Using Google/Igalia upstream Ozone Wayland backend

● State of the art GPU acceleration

● Solution tested in multiple embedded devices

● Support for cloud-native technologies

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Chromium and WAM
WAM provides:

● Browser-like architecture for web applications

● Broad optimizations of memory usage, application launch time

● Life-cycle control of web applications

● Extensible both in web platform and system integration

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Reference Hardware
● Detailed startup documentation:

○ https://wiki.automotivelinux.org/start/getting-started

● Different hardware target architectures can be used to build and

test AGL:

○ Renesas R-Car starter kit: h3ulcb / m3ulcb

○ Intel 64-Bit Hardware Platforms: intel-corei7-64

○ RaspberryPi: raspberrypi3 / raspberrypi4

○ Emulation with QEMU / Virtualbox: qemux86-64

https://wiki.automotivelinux.org/start/getting-started

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Building the HTML5 image

● Getting the AGL code (needs depot_tools and Yocto):

● Configuring the build and compiling all the stack with Yocto:

● If you want to work on the current release, check the AGL wiki

repo init -b master \

 -u https://gerrit.automotivelinux.org/gerrit/AGL/AGL-repo

repo sync

source meta-agl/scripts/aglsetup.sh -f -m <target_architecture> \

 -b build agl-devel agl-demo

bitbake agl-ivi-demo-platform-html5

https://chromium.googlesource.com/chromium/tools/depot_tools.git
https://docs.yoctoproject.org/1.8/yocto-project-qs/yocto-project-qs.html
https://wiki.automotivelinux.org/schedule

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Chromium/WAM Yocto layer

● This fetches and builds the recipes of the meta-agl-demo Yocto

layer:

○ WAM

https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-a

gl-demo.git;a=blob;f=recipes-wam/wam/wam_git.bb

○ Chromium

https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-a

gl-demo.git;a=blob;f=recipes-wam/chromium/chromium_git.bb

https://https//gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-demo.git;a=blob;f=recipes-wam/wam/wam_git.bb
https://https//gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-demo.git;a=blob;f=recipes-wam/wam/wam_git.bb
https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-demo.git;a=blob;f=recipes-wam/chromium/chromium_git.bb
https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-demo.git;a=blob;f=recipes-wam/chromium/chromium_git.bb

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Flashing the built images
● The generated image will be located at:

● It can be flashed with the following command:

● Then the SD card can be inserted on the device and booted for the

first time.

build/tmp/deploy/images/<arch>/agl-ivi-demo-platform-html5-<arch>.wic.xz

xzcat path/to/arch/agl-ivi-demo-platform-html5-<arch>.wic.xz \

 | sudo dd of=/dev/mmcblk0 bs=4M && sync

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

The html5 image

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Structure of a webapp
● They can be as simple as:

○ An appinfo.json file that contains metadata such as the

application id, title, description, application type, the main file and

icon.

○ The source with any of the HTML application resources and a

LICENSE file

● There is no dependency of any specific web technology:

○ Pure HTML+JavaScript, WASM

○ Any frameworks or libraries as Enact, AngularJS, React...

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Steps for creating a webapp
● Create the new git repository (or local directory) for the new

application

○ Add a main html file, all needed resources, etc

● Choose and add a license file

○ It will be needed later when we create the recipe

● Add an appconfig.json file

● Create a Yocto recipe and add it to AGL tree

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Example application: Jamendo

As an example, let's create an application that simply redirects the user

to jamendo.com

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

appinfo.json
{

 "id": "webapps-jamendo",

 "title": "JAMENDO",

 "description": "Free independent music streaming",

 "version": "0.0.0",

 "vendor": "Igalia, S.L.",

 "type": "web",

 "main": "index.html",

 "uiRevision": "2",

 "icon": "icon.svg"

}

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

index.html
<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">

 <title>Jamendo AGL</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf8"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no"/>

 </head>

 <body>

 <script>

 window.location = "https://www.jamendo.com"

 </script>

 </body>

</html>

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Creating the Yocto recipe
● Create a recipe folder in /meta-agl-demo/recipes-demo/

● Create the recipe file: html5-jamendo_git.bb

● Add the basic information (You can check the glossary for the meaning of each

variable, and check Yocto guides):

SUMMARY = "Free independent music streaming"

HOMEPAGE = "<homepage>"

SECTION = "apps"

LICENSE = "Apache-2.0"

LIC_FILES_CHKSUM = "file://LICENSE;md5=b1e01b26bacfc2232046c90a330332b3"

PV = "1.0+git${SRCPV}"

S = "${WORKDIR}/git"

B = "${WORKDIR}/build"

https://docs.yoctoproject.org/1.6/bitbake-user-manual/bitbake-user-manual.html#recipes
https://docs.yoctoproject.org/ref-manual/variables.html
https://wiki.yoctoproject.org/wiki/Building_your_own_recipes_from_first_principles

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Creating the Yocto recipe
● Setup the fetcher of the app source:

SRC_URI = "git://github.com/rogerzanoni/html5-jamendo;protocol=https;branch=main"

SRCREV = "51624ff085bd5d57a7dc4b196bfd567f91766318"

● It's possible to set different kinds of fetchers, for example, setting

it up to fetch from a local repository:

SRC_URI = "git:///home/<path-to-source-repository>/html5-jamendo;protocol=file;branch=main"

SRCREV = "51624ff085bd5d57a7dc4b196bfd567f91766318"

https://docs.yoctoproject.org/1.8/bitbake-user-manual/bitbake-user-manual.html#bb-fetchers

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Creating the Yocto recipe
● During development it may be useful to make the recipe skip fetching the

source and using a local source directory

● To do so, create a file in your directory:

● Then the option "agl-localdev" need to be passed to aglsetup.sh:

local.dev.inc <AGL_ROOT>/build/conf

INHERIT += "externalsrc"

EXTERNALSRC_pn-<recipe-name> = "/path-to-your-source-dir/"

For instance:

EXTERNALSRC_pn-chromium = "/path-to-the-source-dir/chromium91/"

EXTERNALSRC_pn-wam = "/path-to-the-source-dir/wam/"

EXTERNALSRC_pn-<webapp> = "/path-to-the-source-dir/<webapp>/"

source meta-agl/scripts/aglsetup.sh -f -m <target_architecture> \

 -b build agl-devel agl-localdev agl-demo

bitbake agl-ivi-demo-platform-html5

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Creating the Yocto recipe
● Finally, setup the build and install instructions:

inherit pythonnative agl-app

AGL_APP_TEMPLATE = "agl-app-web"

AGL_APP_ID = "webapps-jamendo"

AGL_APP_NAME = "JAMENDO"

WAM_APPLICATIONS_DIR = "${libdir}/wam_apps"

do_install() {

 install -d ${D}${WAM_APPLICATIONS_DIR}/${PN}

 cp -R --no-dereference --preserve=mode,links ${S}/* \

${D}${WAM_APPLICATIONS_DIR}/${PN}

}

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Changing the html5 packagegroup

● The AGL build system needs to know where the new application is

to bake it into new images. For that, an entry needs to be added to

<AGL root>/recipes-platform/packagegroups/packagegroup-agl-demo-platform-html5.bb

...

AGL_APPS = " \

 ...

 html5-settings \

 html5-aquarium \

 html5-youtube \

 html5-jitsi \

 html5-examples \

==> html5-jamendo \

 "

...

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Testing the new app on a QEMU image

● After the packagegroup setup, the application should be ready to

be build and included in the image.

○ Use "qemux86-64" as architecture and build as described in

previous slides

○ Run it with

○ Connect to the running instance using a vnc client

runqemu qemux86-64 kvm publicvnc slirp

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Testing the new app on a QEMU image

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Remote DevTools
● Auto enabled when the image was built with agl-devel, at port

9998

● To test while running a QEMU image, the network options can be

overridden to enable port forwarding by using the following

environment variable before running runqemu:

export QB_SLIRP_OPT="-netdev user,id=net0,hostfwd=tcp::2222-:22,hostfwd=tcp::9999-:9998"

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Remote DevTools

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Interacting with services
● The current HVAC AGL demos uses the kuksa.val server

○ KUKSA.val provides in-vehicle software components for

working with in-vehicle signals modelled using the COVESA

VSS data model

■ VSS can be used by application to communicate

information around the vehicle

● Currently clients use websockets connect to a service listening on

port 8090

https://github.com/eclipse/kuksa.val
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Communicating with the server

● Connect to the server using a websocket:

var socket = new WebSocket('wss://localhost:8090');

● After connecting, to be able to use the signals, the client must be

authorized:

socket.onopen = function(event) {

 init();

}

function init() {

 authorize();

 ...

}

function authorize() {

 var data = {

 action: 'authorize',

 tokens: <authToken>,

 requestId: <requestId>,

 };

 socket.send(JSON.stringify(data));

}

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Communicating with the server

● <authToken> is the JSON Web Token of your client

○ On real applications each application must have their own

tokens, but for development the kuksa.val keys can be used

○ kuksa.val repository provides a doc with more information

● <requestId> is a unique id set by the client and returned by the

server in the response

● More info about the protocol can be found in kuksa.val

documentation and VISS specs

https://jwt.io/
https://github.com/eclipse/kuksa.val/blob/master/kuksa_certificates/jwt/super-admin.json.token
https://github.com/eclipse/kuksa.val/blob/master/doc/jwt.md
https://github.com/eclipse/kuksa.val/tree/master/doc/protocol
https://www.w3.org/TR/vehicle-information-service/

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Subscribing

● After the authentication, the client can subscribe to vehicle signals

to receive notifications of value changes:

function subscribe(path) {

 var data = {

 action: 'subscribe',

 tokens: <authToken>,

 requestId: requestId,

 path: path,

 };

 socket.send(JSON.stringify(data));

}

socket.onmessage = function(event) {

 var jsonData = JSON.parse(event.data);

 if (jsonData.action == 'get' ||

 jsonData.action =='subscription') {

 ...

 }

}

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Setting/Getting data

● Similar signals can be used to set/retrieve data:

function get(path) {

 var data = {

 action: 'get',

 tokens: <authToken>,

 requestId: <requestId>,

 path: path,

 };

 socket.send(JSON.stringify(data));

}

function set(path, value) {

 var data = {

 action: 'set',

 tokens: <authToken>,

 requestId: <requestId>,

 path: path,

 value: value,

 };

 socket.send(JSON.stringify(data));

}

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

HVAC demo

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Ongoing work and future plans

● Update current hvac demo to use kuksa.val server API

● Continue integrating more webapps

● Update chromium to milestone 94

● Lower prio:

○ Experiment with kuksa.val gRPC API with webapps

○ Propose APIs for other services

○ Bring back chromium as an app

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Ongoing work and future plans

gRPC api sample: kuksa.val client

● Not currently used by the demos

● kuksa.val project provides a protobuf interface that can be used to

generate code that interacts with the service

// The connecting service definition.

service kuksa_grpc_if {

 rpc get (GetRequest) returns (GetResponse) {}

 rpc set (SetRequest) returns (SetResponse) {}

 rpc subscribe (stream SubscribeRequest) returns (stream

SubscribeResponse) {}

 rpc authorize (AuthRequest) returns (AuthResponse) {}

}

message AuthRequest {

 string token = 1;

}

https://github.com/eclipse/kuksa.val/blob/master/kuksa-val-server/protos/kuksa.proto

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Ongoing work and future plans
● Generating the code:

protoc -I=. proto/kuksa.proto --js_out=import_style=commonjs:<out_dir>

--grpc-web_out=import_style=commonjs,mode=grpcwebtext:<out_dir>

● Authenticating

var messages = require('./gen/proto/kuksa_pb.js');

var services = require('./gen/proto/kuksa_grpc_web_pb.js');

var target = "localhost:8090";

var client = new services.kuksa_grpc_ifClient(target);

function init() {

 var request = new messages.AuthRequest();

 request.setToken(authToken);

 client.authorize(request);

}

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Ongoing work and future plans

● Standard way of interacting with the services

○ protobuf interfaces can be used to generate code for multiple

languages

● Other services can define similar interfaces

● Needs a proxy service (ex: Envoy for gRPC-web)

○ More on The state of gRPC in the browser

● Maintenance cost

https://www.envoyproxy.io/
https://github.com/grpc/grpc-web
https://grpc.io/blog/state-of-grpc-web/

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Sample code

● Jamendo

○ App https://github.com/rogerzanoni/html5-jamendo

○ Recipe https://github.com/rogerzanoni/html5-jamendo-recipe

● kuksa.val HVAC

○ App https://github.com/rogerzanoni/html5-tailwind-hvac

○ Recipe https://github.com/rogerzanoni/html5-tailwind-hvac-recipe

https://github.com/rogerzanoni/html5-jamendo
https://github.com/rogerzanoni/html5-jamendo-recipe
https://github.com/rogerzanoni/html5-tailwind-hvac
https://github.com/rogerzanoni/html5-tailwind-hvac-recipe

Development and integration of webapps into AGL Platform

Lorenzo Tilve / Roger Zanoni, Igalia

Thanks
Contact:

● Jose Dapena - jdapena@igalia.com

● Lorenzo Tilve - ltilve@igalia.com

● Roger Zanoni - rzanoni@igalia.com

