

Window Manager
Specification Document

Based on 20170802 HMI-Framework Architecture (V0.2.4)

Aug, 2017

HMI-Framework – WindowManager Specification Document
Aug, 2017

Overview
This document is presenting simplified sequence diagrams for illustrating the interaction between any
application and the WindowManager. Assumed that the applications are written in Qt, but can also be
HTML5 via a QWebView, or JavaFX. If Java or any other GUI toolkit is used instead of Qt, we do
assume that the binding for the Wayland/Weston and a similar QPA interface for configuring the
graphics hardware should be in place and have support for the WindowManager API. This binding is
not a part of the WindowManager.
First, the application in the system initialization phase, will call requestSurface() with the label as
parameter to obtain the areaID. The areaID received from the WindowManager refers to the
QT_IVI_SURFACE_ID environment variable related to the IVI Shell that every application has to export
in its own running environment.
We do assume that ApplicationFramework is in charge on notifying a specific application when events
like start application or show application happen. Such events are generated by a hard key press or
button/shortcut selection from HomeScreen. LastUserSession manager might be another usecase, but
at the moment this functionality is missing from the AGL system.
When the ApplicationFramework requests to an application to become active/visible, the
WindowManager will receive from that application activateSurface() call with the label used for
requesting the surface. The PolicyManager and LayoutManager are involved in order to decide if at that
time the application can be displayed. In the most favorable case, the WindowManager will notify the
Weston/Compositor about its decision and the change the screen layout, emitting notifications to clients
about the change. Once notified, the application is responsible that the new surface to become visible
and trigger repaint based on this configuration. The Toolkit triggers automatically the swapBuffers(). In
the same time the WindowManager notifies the application about the fact that the surface will become
visible. In case the policies or the layout requirements are not met the invisible() and inactive() will be
emitted to the application.
The decision to display or not an application surface on screen is based on the set of rules from the
Policy DB or Layout DB. For simplifying the diagram the WindowResourcesManager,
WindowPolicyManager and WindowLayoutManager are not represented. Only the internal calls are
included.
In case that a second application is launched and the layout allows both applications to be displayed in
the same time, same scenario applies, only that both applications get notified that the surface to draw
was changed and a layout update is needed.

HMI-Framework – WindowManager Specification Document
Aug, 2017

Application Initialization Phase
The ApplicationFramework is an AGL component that is responsible for notifying the applications
about the changes in system lifecycle (start, pause, resume, stop, etc.).
Three separate scenarios can be considered for this initialization phase:

1. First application start – this happens when the system is started for the very first time.
2. Application selected by hard key press or HomeScreen/ApplicationLauncher application

shortcut press.

HMI-Framework – WindowManager Specification Document
Aug, 2017

All scenarios reduce to this diagram because in each case the ApplicationFramework component will
be involved. The ApplicationFramework is the module in charge with notifying the applications when
to start, pause, resume or stop events occur. The ApplicationFramework gets this information from
HomeScreen or other AGL components.

HMI-Framework – WindowManager Specification Document
Aug, 2017

Application Active/Visible Phase
The application activation sequence is simple, the HomeScreen notifies ApplicationFramework what
application was selected by user. If the application is not already started, then will initialize it. The
Application will call first activateSurface() with the label used previously for configuring the surface.
Here internal WindowManager components are responsible to decide if the policies are met and the
layout is valid. If this statement is true, the WindowManager will send the new setup to the Weston
and then notify the application that will get visible. Next step is to emit the syncDraw() event. From
now on the application draws the content to the surface. When finished, the Application will call
endDraw(). WindowManager will notify Weston about this event and immediately will issue
flushDraw() to the application in order to trigger the swapBuffers() call.

If the Application breaks policy rules or the layout doesn’t allow drawing, the WindowManager will
call invisible() and inactive() to the application.

HMI-Framework – WindowManager Specification Document
Aug, 2017

A slightly different approach is presented in the next diagram that describes the case when an
application running in FullScreen configuration is replaced by another application. In this case the
policy specifies that App1 will be replaced by App2 and the FullScreen configuration will be kept.

HMI-Framework – WindowManager Specification Document
Aug, 2017

Below is described the scenario for a second application that is selected by the user and the policies
allow to display both applications at the same time in SplitScreen configuration. In this case the policy
specifies that App1 and App2 can be displayed in the same time in the SplitScreen configuration.

One important aspect is that between the moment when the first application is notified about the fact
that the surface used for drawing changed and the moment when both applications updated surfaces

HMI-Framework – WindowManager Specification Document
Aug, 2017

accordingly, the screen will “freeze”. It depends on both applications launched how much the screen
will remain frozen. The first application that was the only active application until that moment, now
becomes inactive, being replaced by the second application.
The next scenario represents the case when one of the previously started applications is no longer
wanted to be displayed. This means that when the application receives the notification will
immediately call the deactivateSurface() for the requested surface. The sequence diagram is
presented below:

The next scenario to be handled is the event of showing a popup. Let’s assume that current screen
configuration is split-screen and we have two applications displayed. A third application that is already
initialized and has requested a surface for a popup to be displayed. In this case will request to the
WindowManager to display that popup on screen. The sequence diagram for this scenario is listed
below:

HMI-Framework – WindowManager Specification Document
Aug, 2017

HMI-Framework – WindowManager Specification Document
Aug, 2017

Layout Manager
The LayoutManager is based on the information already
provided by AGL_HMI-FW_arch document. There are only
two layouts supported, Full Screen and Split Screen as
described in the picture from left.
The applications can be separated in three different
categories:
1. HomeScreen/ApplicationLauncher – will always be
displayed in Full Screen configuration.
2. Navigation – that might be displayed in Full Screen
or Split Screen configuration. In case of Split Screen, the

Main area will be used.
3. Base or Generic applications – that might be displayed in Full Screen or Split Screen. In case of

Split Screen, the Main and Sub areas can be used.
Based on this information, a layout json file is used to define the way the layout is configured. An
example of this kind of file might be the following:

[
 {
 "areas": [
 {
 "height": 1920,
 "name": "ControleBar",
 "width": 1080,
 "x": 0,
 "y": 0,
 "zorder": 0
 },
 {
 "height": 1920,
 "name": "HomeButton",
 "width": 100,
 "x": 0,
 "y": 0,
 "zorder": 0
 }
],

CControlBar

FULL

CHomeButton
① FULL

CControlBar

SUB

CHomeButton

MAIN

② HALF

HMI-Framework – WindowManager Specification Document
Aug, 2017

 "name": "HomeScreenBasic"
 },
 {
 "areas": [
 {
 "height": 1280,
 "name": "Main",
 "width": 1080,
 "x": 0,
 "y": 300,
 "zorder": 0
 },
 {
 "height": 1280,
 "name": "Sub",
 "width": 1080,
 "x": 0,
 "y": 600,
 "zorder": 0
 }
],
 "name": "ApssHalfBasic"
 }
]

HMI-Framework – WindowManager Specification Document
Aug, 2017

Policy Manager
The PolicyManager is the module responsible with reading the policy rules from the database,
mapping them into memory, then deciding based on this set of rules if an application surface can be
displayed or not. The simplest policy table that can be considered as an example for a stopped vehicle
is presented in the table below.
The intention is to give the OEM the possibility to change the rules for each car model. The rules
presented are generic, might change on the final version.

Current Screen Configuration Next Selected App Resulting Screen Configuration
Full (HomeScreen) HomeScreen Full (Homescreen)
Full (HomeScreen) Navigation Full (Navigation)
Full (HomeScreen) Base Full (Base)
Full (Navigation) HomeScreen Full (HomeScreen)
Full (Navigation) Base Split (Main: Navigation, Sub: Base)
Full (Base) HomeScreen Full (HomeScreen)
Full (Base) Navigation Full (Navigation)
Full (Base) Base Split (Main: Base1, Sub: Base2)
Split (Main: Navigation, Sub: Base) Navigation Full (Navigation)
Split (Main: Navigation, Sub: Base) Base2 Split (Main: Navigation, Sub: Base2)
Split (Main: Base, Sub: Base2) Base3 Split (Main: Base3, Sub: Base2)

HMI-Framework – WindowManager Specification Document
Aug, 2017

Resource Manager
Resource Manager is the component that keeps track of every surface created by any application.
The current approach is that only one window/surface/area will be available for each application.
This component will have a database that links each application with the areaID. As already
described in the sequence diagram. The WindowManager works with areaID, but at some point in
order to be able to implement the layout rules, needs to know what areaID corresponds to what
application or surface created with a specific label.
We assume this table might look like the following:

Application Area ID Surface Label Surface Type
HomeScreen 1000 HOMESCREEN_APPS Normal Surface
Navigation (Main) 2000 NAVI_MAP Normal Surface
Navigation (Main) 3000 NAVI_HIGHWAY_INF OnScreen Surface
Base 2001 MEDIA_PLAYER Normal Surface
Base2 2002 PHONE_BOOK NormalSurface
Base2 3001 PHONE_CALL OnScreen Surface
Base3 3002 ENGINE_ALERT OnScreen Surface

This table intention is to clarify how the applications are linked with the actual surfaceID’s used by
the WindowManager to identify the surfaces that needs to control. For configuring the
WindowManager, the layers.json file provided within the package needs to be updated.
The most important part is that the areaID will only be used by the WindowManager internal
components for the communication with the Wayland/Weston.

HMI-Framework – WindowManager Specification Document
Aug, 2017

Window Manager
The WindowManager consists of multiple modules as presented in the diagram bellow. The most
important three modules are presented in the previous chapters of this document. The rest will be
presented briefly in this section.
The WindowManager provides an interface for communication with other applications or with
external AGL components like the HomeScreen. The API client library will provide to the applications
the easiest way to use the WindowManager API.
An interface between the Weston/Wayland Compositor and the WindowManager is also included
in this diagram, because the WindowManager is intended to be an extension of Weston that meets
client requirements. The WindowManager will be a separate process that implements a protocol for
communicating with the WaylandCompositor.

The WindowManager internal structure presented in the picture above remains unchanged. The
following diagram presents a layered design that makes easier to understand interaction between
applications, AGL components, Weston and WindowManager.
The AGL transport layer is implemented by both WindowManager API Service and the
WindowManager API Client library, making easier for developers to create new applications.

Communication between WindowManager and the other system components consists of 2 different
aspects:
1. Communication with Applications and HomeScreen that can be considered as a special case of

application. Is based on AGL’s Transport Layer – AGL Binding mechanism.

HMI-Framework – WindowManager Specification Document
Aug, 2017

2. Communication with Weston. The Wayland client implementation from WindowManager
implements a special protocol for talking with Weston’s Compositor.

The IVI Application component of Weston it is just a mapping of Wayland surfaces to IDs, so that
surfaces can be "addressed" for layout changes globally (in the Wayland Compositor). Without the
IVI Application ID’s the surfaces are only known to the Wayland Compositor and the Wayland
Client that created them, in our case the WindowManager.

HMI-Framework – WindowManager Specification Document
Aug, 2017

WindowManager API
The WindowManager API can be separated into three different sections:
I. WM Functions:
int areaid requestSurface(string label) – Returns the areaid to an application to then create its
owned surface with id areaid. The label is a string defined by the OEM, can be
NAVI_MAP/NAVI_HIGHWAY_INF for example on the Navigation application.
bool activateSurface(string label) - Activate the application surface corresponding to the label, i.e.
make it visible in its assigned area according to layout
bool deactivateSurface(string label) - Deactivate an application surface, based on the label
provided by the application as parameter
void endDraw(string label) - Rendering completed for the surface represented by the label
provided by the application as parameter

II. WM Events (to clients)
void visible(string label) – Notify that label surface has become visible
void invisible(string label) – Notify that label surface has become invisible
void active(string label) - Notify that the label surface is currently active (has focus)
void inactive(string label) - Notify that the label surface has become inactive (has lost focus)
void layoutChanged(string label, layout newlayout) – Notify a client that the label surface needs a
layout changed
void syncDraw(string label) – Redraw label surface after layout change
void flushDraw(string label) – Notify client that it should swap buffers (after SyncDraw)
void popupTimedOut(string label) - Notify a client, that its popup surface timeout is expired (some
policy-defined value, e.g. 10 seconds).

HMI-Framework – WindowManager Specification Document
Aug, 2017

III. WM Debugging
void list_drawing_names() – Printing all registered surfaces that have a name attached
void debug_layers() – Printing all the layers currently configured by the WindowManager and their
properties
void debug_surfaces() – Printing all the known surfaces and their properties that correspond to the
current WindowManager layout configuration (visible surfaces and their geometry)

HMI-Framework – WindowManager Specification Document
Aug, 2017

Annex
For Sequence Diagram design PlantUML was used, for more details visit http://www.planttext.com

The source code for the Init Application sequence diagram is:
@startuml
title Application initialization phase
actor User
entity HomeScreen
entity AppFramework
entity App
entity WindowManager
User->HomeScreen: selectApplication()
HomeScreen->AppFramework: launchApp()
AppFramework->App: exec()
note over App
 DrawingName---OEM Define
 e.g.
 NAVI_MAP Normal Surface
 NAVI_HIGHWAY_INF OnScreen Suraface
 HOMESCREEN_APPS Normal Surface
end note
App->WindowManager: requestSurface("NAVI_MAP")
WindowManager->WindowManager: generateAreaID()
WindowManager--> App: areaID---Normal Surface
App->App: export IVI_SURFACE_ID = areaID
App->App: CreateSurface()
App->WindowManager: requestSurface("NAVI_HIGHWAY_INF")
WindowManager->WindowManager: generateAreaID()
WindowManager--> App: areaID---OnScreen Surface

HMI-Framework – WindowManager Specification Document
Aug, 2017

App->App: export IVI_SURFACE_ID = areaID
note over App
 Usually the framework is responsible for
 creating the surface
end note
App->App: CreateSurface()

@enduml

HMI-Framework – WindowManager Specification Document
Aug, 2017

The source code for the application active/visible sequence diagram is:
@startuml
title WindowManager Sequence Diagram (HS->FS)
actor User
entity HomeScreen
entity AppFramework
entity App
entity WindowManager
entity Weston
User->HomeScreen: selectApplication
HomeScreen->AppFramework: launchApp()
AppFramework->App: exec()
App->WindowManager: activateSurface("NAVI_MAP")
WindowManager->WindowManager: PolicyManager::checkPolicy()
WindowManager->WindowManager: LayoutManager::checkLayout()
WindowManager->Weston: configure(areaID, geometry)
WindowManager->App: active("NAVI_MAP")
WindowManager->HomeScreen: inactive("HOMESCREEN_APPS")
WindowManager->App: visible("NAVI_MAP")
WindowManager->App: syncDraw("NAVI_MAP")
App->WindowManager: endDraw("NAVI_MAP")
WindowManager->Weston: updateSurface()
WindowManager->App: flushDraw("NAVI_MAP")
App->App: paint()
App->Weston: swapBuffers()

@enduml

HMI-Framework – WindowManager Specification Document
Aug, 2017

The source code for the application replaced by another application sequence diagram:
@startuml
title WindowManager Sequence Diagram (FS->FS)
actor User
entity HomeScreen
entity AppFramework
entity App1
entity App2
entity WindowManager
entity Weston
User->HomeScreen: selectApplication
HomeScreen->AppFramework: launchApp()
AppFramework->App2: exec()
App2->WindowManager: activateSurface("MEDIA_PLAYER")
WindowManager->WindowManager: PolicyManager::checkPolicy()
WindowManager->WindowManager: LayoutManager::checkLayout()
WindowManager->Weston: configure(areaID2, geometry)
WindowManager->App2: active("MEDIA_PLAYER")
WindowManager->App1: inactive("NAVI_MAP")
WindowManager->App1: invisible("NAVI_MAP")
WindowManager->App2: visible("MEDIA_PLAYER")
WindowManager->App2: syncDraw("MEDIA_PLAYER")
App2->WindowManager: endDraw("MEDIA_PLAYER")
WindowManager->Weston: updateSurface()
WindowManager->App2: flushDraw("MEDIA_PLAYER")
App2->App2: paint()
App2->Weston: swapBuffers()

@enduml

HMI-Framework – WindowManager Specification Document
Aug, 2017

The source code for two applications getting visible/active sequence diagram:
@startuml
title WindowManager Two Applications Split Screen Sequence Diagram (FS->SS)
actor User
entity HomeScreen
entity AppFramework
entity FirstApp
entity SecondApp
entity WindowManager
entity Weston
note over FirstApp
 We do assume that the first application
 was launched, currently being displayed in fullscreen
 and the second application was previously initialized
end note
User->HomeScreen: selectApplication
HomeScreen->AppFramework: launchApp()
AppFramework->SecondApp: exec()
SecondApp->WindowManager: activateSurface("MEDIA_PLAYER")
WindowManager->WindowManager: PolicyManager::checkPolicy()
WindowManager->WindowManager: LayoutManager::checkLayout()
 WindowManager->FirstApp: layoutChanged(newLayout)
 WindowManager->SecondApp: layoutChanged(newLayout)
 WindowManager->Weston: configure(areaID1, geometry)
 WindowManager->Weston: configure(areaID2, geometry)
 WindowManager->FirstApp: inactive("NAVI_MAP")
 WindowManager->SecondApp: active("MEDIA_PLAYER")
 WindowManager->SecondApp: visible("MEDIA_PLAYER")
 WindowManager->FirstApp: syncDraw("NAVI_MAP")
 WindowManager->SecondApp: syncDraw("MEDIA_PLAYER")

HMI-Framework – WindowManager Specification Document
Aug, 2017

 note over FirstApp: application updates it's surface
 note over SecondApp: application updates it's surface
 FirstApp->WindowManager: endDraw("NAVI_MAP")
 note over FirstApp: update surface job finished
 note over WindowManager: waiting fot the second application to finish
 SecondApp->WindowManager: endDraw("MEDIA_PLAYER")
 note over SecondApp: update surface job finished
 note over WindowManager: notify weston about the change
 WindowManager->Weston: updateSurface()
 WindowManager->FirstApp: flushDraw("NAVI_MAP")
 WindowManager->SecondApp: flushDraw("MEDIA_PLAYER")
 note over WindowManager
 From now on the applications
 are responsible for the content
 drawn on their own surfaces
 end note
 FirstApp->FirstApp: paint()
 FirstApp->Weston: swapBuffers()
 SecondApp->SecondApp: paint()
 SecondApp->Weston: swapBuffers()

@enduml

HMI-Framework – WindowManager Specification Document
Aug, 2017

The source code for application getting invisible/inactive sequence diagram:
@startuml
title WindowManager One Application Removed Sequence Diagram (SS-FS)
entity AppFramework
entity FirstApp
entity SecondApp
entity WindowManager
entity Weston
note over FirstApp, SecondApp
 We do assume that the two applications were
 launched and are displayed in split screen configuration
end note
AppFramework->SecondApp: stop()
SecondApp->WindowManager: deactivateSurface("MEDIA_PLAYER")
WindowManager->FirstApp: layoutChanged("NAVI_MAP", newLayout)
WindowManager->Weston: configure(areaID1, geometry)
note over SecondApp: assuming SecondApp was the last active application
WindowManager->FirstApp: active("NAVI_MAP")
WindowManager->SecondApp: inactive("MEDIA_PLAYER")
WindowManager->SecondApp: invisible("MEDIA_PLAYER")
WindowManager->FirstApp: syncDraw("NAVI_MAP")
note over FirstApp: surface update job in progress
FirstApp->WindowManager: endDraw("NAVI_MAP")
note over FirstApp: surface update job finished
note over WindowManager: notify weston about the change
WindowManager->Weston: updateSurface()
WindowManager->FirstApp: flushDraw("NAVI_MAP")
FirstApp->FirstApp: paint()
FirstApp->Weston: swapBuffers()

@enduml

HMI-Framework – WindowManager Specification Document
Aug, 2017

The source code for application requesting for a popup sequence diagram:
@startuml
title Two Applications SplitScreen to Popup FullScreen Sequence Diagram (Popup)
entity FirstApp
entity SecondApp
entity PopupApp
entity WindowManager
entity Weston
note over FirstApp, SecondApp
We assume that the two applications are already started,
running in split screen mode.
Same scenario applies for one application running
in full screen mode too.
end note
note over PopupApp: we assume that the application is already initialized
PopupApp->WindowManager: activateSurface("NAVI_HIGHWAY_INF")
WindowManager->WindowManager: PolicyManager::checkPolicy()
WindowManager->WindowManager: LayoutManager::checkLayout()
WindowManager->Weston: configure(areaID3_popup, geometry)
WindowManager->FirstApp: inactive("PHONE_BOOK")
WindowManager->SecondApp: inactive("MEDIA_PLAYER")
WindowManager->PopupApp: active("NAVI_HIGHWAY_INF")
WindowManager->FirstApp: invisible("PHONE_BOOK")
WindowManager->SecondApp: invisible("MEDIA_PLAYER")
WindowManager->PopupApp: visible("NAVI_HIGHWAY_INF")
WindowManager->PopupApp: syncDraw("NAVI_HIGHWAY_INF")
note over PopupApp: popup surface is updated
PopupApp->WindowManager: endDraw("NAVI_HIGHWAY_INF")
note over PopupApp: popup surface updated update is finished
WindowManager->Weston: updateSurface()

HMI-Framework – WindowManager Specification Document
Aug, 2017

WindowManager->PopupApp: flushDraw("NAVI_HIGHWAY_INF")
PopupApp->PopupApp: paint()
PopupApp->Weston: swapBuffers()
@enduml

