
AGL Reference Compositor: 2019 plans

AGL System Architecture Team

Daniel Stone
Graphics Lead, Collabora
daniels@collabora.com



2

AGL F2F Tokyo: March 2019
Compositor discussion recap



3

Background
● AGL defines high-level APIs: Window Manager, Home Screen

– heavily integrated with App Framework

● Applications rely on Wayland for graphics & input

– 'Wayland' not very well defined (what extensions?)

– provided in AGL by Weston (community reference server)

– lower-level API, not directly integrated with App FW



4

Definitions
● Window management: policy and placement to show HMI, 

application, notifications (etc) on screen
● WindowManager/WM & HomeScreen/HS: AGL defined 

Binder APIs
● Wayland: core Wayland protocol and common extensions
● Compositor: Wayland display server, hosting clients, 

displaying output, forwarding input
● Weston: community-maintained reference compositor
● IVI shell: Weston module allowing external WM



5

Current
Window
Manager
design



6

Pain points in current design
● Complex architecture: many components

– Weston IVI shell, GENIVI Wayland IVI extension, AGL WM

– functional changes may need several API and protocol 

extensions (C, Wayland, Binder)

● Difficulty of change: multiple unsynchronised communities

– Weston upstream, GENIVI extension, AGL WM/HS



7

AGL window management
Proposed new architecture



8

Motivations for change
● Simplify architecture

– multi-process & multi-protocol design does not improve 

reliability

● OEM flexibility for HMI customisation

– make it easier for OEMs to change window management 

policy, create differentiated UI



9

Assumptions for new design
● Differentiate at correct level for AGL

– when creating new/specialised components: does this 

add value?

● Reliability and performance are critical

● Clearly define interfaces: what can each component expect 

of other components?



10

New design basics: high level
● Build reference compositor framework based on libweston
● Provide helper API alongside libweston implementing AGL 

APIs and integration
● Provide full reference compositor/WM for demo usecases
● Provide clear points of UI/WM differentiation and 

customisation for OEMs
● Allow OEMs to replace entire stack with own 

implementation if they implement the same APIs



11

Proposed
Window
Manager
design



12

New design basics: technical detail
● Eliminate multi-process design: window management in 

same process as compositor
● Provide same AGL WM/HS Binder APIs to clients
● Integrate with AGL App Framework main loop
● Enable automotive functionality: CAN input (buttons)
● Deep support for logging, tracing, capture
● Clear path for multi-process apps (e.g. Navi UI & map) to 

control full placement and presentation (layers)
● Testable through CIAT/Fuego



13

Current and future work plans



14

Work schedule



15

Currently ongoing work
● Clearly capture and document design, requirements
● Define external APIs: what must an AGL compositor 

implement for portable clients?
● Create publishable documentation and work plan



16

Next steps: Halibut
● Upgrade Weston version for Halibut Yocto build
● Allow for integrated Wayland and AGL App Framework main 

loops
● Continue bring up of reference compositor based on 

libweston
● Port AGL window manager service to libweston base
● Ensure basic HMI and clients work as is



17

Next steps: Icefish
● Continue development of proof of concept
● Reach feature parity with current solution on reference 

platforms
● Ensure reference compositor works in development 

environments (QEMU), tested in Fuego
● Make startup reliable: investigate options for better home 

screen loading
● Integrate new Weston version after upstream improvement
● Integrate reference compositor to replace Weston if able



18

Next steps: beyond
● Capture requirements from CES 2020 demo
● Participate in requirements development for Jellyfish
● Push improvements to upstream Wayland community
● Ensure OEM HMI customisation points are clearly 

documented, provide examples
● Helper library API versioning and change process



19

Work schedule



20

Thank you!


