
AGL Compositor update: Sep 2019

Daniel Stone
daniels@collabora.com



Open FirstOpen First

Hi, I'm Daniel

Graphics lead at Collabora
Open-source consultancy est. 2005
Wayland core developer



3

Outline and agenda
● Update on compositor/WM progress
● Window manager and shell architecture recap
● Flexible output management
● Future development and input manager
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Update on progress
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Compositor/WM progress
● AGL ivi-compositor project created and stood up
● Support for DRM/KMS, Wayland, X11 backends
● Initial home screen ported and available
● Basic window/output management functionality available
● Work beginning to integrate with UCB and make available
● Configured through weston.ini (like old compositor)

https://gitlab.collabora.com/agl/agl-ivi-compositor

https://gitlab.collabora.com/agl/agl-ivi-compositor
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Home screen progress
● Current AGL reference UI has ‘all in one’ home screen
● No separation of panels/dialogs/etc into windows at 
Wayland protocol level

● Ongoing work to separate these out and provide separate 
surfaces to compositor

● Should be presentable end of September
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Window management / shell
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Window management concept
● WM based on output/layer/surface (like IVI shell)
● New concept from Weston: surface view

– Views position an output within a layer
– Multiple views allow to show surface in different places
– Crucial for remoting: can create new view for other 
display or ECU

– Window manager always controls views!
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Window management concept
● Not so different from previous IVI shell!
● Key difference: give OEMs power to manage windows 
themselves with full API

● Offer callback into OEM module for every window event
– new window created
– window content updated
– window removed
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Surface/view
relationship

● Compositor creates 
layers for grouping

● Positions layers 
within compositor 
space

● Compositor creates 
views for each 
surface to display

● Positions views 
within layers

● AGL IVI compositor 
API to manage view 
creation and 
positioning

● Display of views 
handled by 
libweston
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Relationship
between

libweston and
AGL views
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Why two separate lists?
● Keep IVI concept of Z positioning
● Flexible positioning: allow views to be dynamically enabled/
disabled

● Easy integration with OEM WM policy

– AGL view API can be stable for OEM plugins

● AGL core compositor will maintain translation between two 

worlds: recalculate libweston list after WM changes
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Animation framework integration
● Time-driven animations made available to WM
● Spring physics model provides simple easing
● Parameters are desired end state and time to achieve end 
state

● Intermediate frames driven by output repaint
● Available animators:

– Move window
– Zoom window
– Fade window opacity
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Animation framework example
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Next developments for shell
● Collect additional OEM shell requirements through JIRA
● Example of pop-up dialog content such as warnings or 
status updates

● Integration with Web Application Manager (see afternoon 
session)
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Output management
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Output management status
● Current output configuration only handled by weston.ini:

[output]
name=HDMI-A-1
mode=1920x1080
rotate=270
[output]
name=HDMI-A-2
mode=off
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Output management status
● Current output configuration only handled by weston.ini:

[output]
name=HDMI-A-1
mode=1920x1080
rotate=270
[output]
name=HDMI-A-2
mode=off

Must be 
made 

dynamic!
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Output manager concepts
● Based on Weston’s model with separate head/output
● ‘Head’ represents a display device: HDMI, eDP, DSI screens, 
or virtual output windows

● ‘Output’ represents a grouped area of pixels to be shown on 
a head

● Fully exposes capability of hardware and system as 
separate concerns
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Output manager concepts
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Output manager concepts
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Output manager benefits
● Supports complex usecases like clone mode, e.g. all RSE 
showing same content from one pixel pipe

● Based on runtime dynamic API: window manager can 
always make policy decisions and change configuration

● Dynamic output management allows for remote displays 
being added/removed

● Output manager can query head information even if 
disabled

● Output layout, positioning, etc determined by compositor
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Output manager API
● List of weston_head available:
   struct weston_head *head = NULL;
    while ((head = weston_compositor_iterate_heads(ivi->compositor, head)))
            /* XXX: do something with head */

● Properties available for heads:
– name
– connection status (connected, disconnected)
– available modes (resolution)
– EDID/CEA display information
– content protection
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Output manager API
● ‘Heads changed’ signal provided via standard Wayland 
signal/listener mechanism

● Compositor iterates properties of all heads and configures 
based on policy

● libweston applies new policy
● Further development required for example future complex 
usecases
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Future development
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Input bindings: hardkey & CAN
● Input manager currently only supports runtime application 
of key bindings

● Create helper module adding support for high-level CAN 
bindings allowing use of CAN inputs

● Create helper module showing example configuration of 
bindings (e.g. file on disk configuring actions to be taken 
when keys pressed)
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Input bindings: touch gesture
● Touch gesture bindings currently only support set number 
of fingers
– Example: three fingers on screen triggers binding

● Add example swipe gesture recognition to allow switching 

between applications

● Allow gesture navigation to be customised through 

configuration
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Input manager design
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Multiple backend support
● Presently being developed by ADIT with support from 
Collabora

● Multiple backends to support heterogeneous environment: 
some output via DRM/KMS, other output into virtualised 
display (safety-critical/IC domain), other output into remote 
display (second-screen/RSE)

● Requires capability for multiple simultaneous hardware 
backends

● Preliminary work being done before upstream
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Miscellaneous items
● Support for overlapping outputs: required for efficient 
virtualisation / remote display to present same content to 
multiple displays without hardware assistance

● Advanced display configuration: allow shell to prepare UI for 
reconfigured output before output becomes active

● libwayland integration with SMACK to query client label



34

CIAT integration
● Much work gone into upstream Weston test suite recently
● GL support for headless renderer designed to allow 
aggressive testing on development or headless devices

● Not currently integrated with AGL testcases and CI
● After CES demo work complete, develop test plan and 
integrate tests into AGL infrastructure
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Thankyou!

daniels@collabora.com
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