
AGL Compositor update: Sep 2019

Daniel Stone
daniels@collabora.com

Open FirstOpen First

Hi, I'm Daniel

Graphics lead at Collabora
Open-source consultancy est. 2005
Wayland core developer

3

Outline and agenda
● Update on compositor/WM progress
● Window manager and shell architecture recap
● Flexible output management
● Future development and input manager

4

Update on progress

5

Compositor/WM progress
● AGL ivi-compositor project created and stood up
● Support for DRM/KMS, Wayland, X11 backends
● Initial home screen ported and available
● Basic window/output management functionality available
● Work beginning to integrate with UCB and make available
● Configured through weston.ini (like old compositor)

https://gitlab.collabora.com/agl/agl-ivi-compositor

https://gitlab.collabora.com/agl/agl-ivi-compositor

6

Home screen progress
● Current AGL reference UI has ‘all in one’ home screen
● No separation of panels/dialogs/etc into windows at
Wayland protocol level

● Ongoing work to separate these out and provide separate
surfaces to compositor

● Should be presentable end of September

7

Window management / shell

8

9

Window management concept
● WM based on output/layer/surface (like IVI shell)
● New concept from Weston: surface view

– Views position an output within a layer
– Multiple views allow to show surface in different places
– Crucial for remoting: can create new view for other
display or ECU

– Window manager always controls views!

10

11

Window management concept
● Not so different from previous IVI shell!
● Key difference: give OEMs power to manage windows
themselves with full API

● Offer callback into OEM module for every window event
– new window created
– window content updated
– window removed

12

Surface/view
relationship

● Compositor creates
layers for grouping

● Positions layers
within compositor
space

● Compositor creates
views for each
surface to display

● Positions views
within layers

● AGL IVI compositor
API to manage view
creation and
positioning

● Display of views
handled by
libweston

13

Relationship
between

libweston and
AGL views

14

Why two separate lists?
● Keep IVI concept of Z positioning
● Flexible positioning: allow views to be dynamically enabled/
disabled

● Easy integration with OEM WM policy

– AGL view API can be stable for OEM plugins

● AGL core compositor will maintain translation between two

worlds: recalculate libweston list after WM changes

15

Animation framework integration
● Time-driven animations made available to WM
● Spring physics model provides simple easing
● Parameters are desired end state and time to achieve end
state

● Intermediate frames driven by output repaint
● Available animators:

– Move window
– Zoom window
– Fade window opacity

16

Animation framework example

17

Next developments for shell
● Collect additional OEM shell requirements through JIRA
● Example of pop-up dialog content such as warnings or
status updates

● Integration with Web Application Manager (see afternoon
session)

18

Output management

19

Output management status
● Current output configuration only handled by weston.ini:

[output]
name=HDMI-A-1
mode=1920x1080
rotate=270
[output]
name=HDMI-A-2
mode=off

20

Output management status
● Current output configuration only handled by weston.ini:

[output]
name=HDMI-A-1
mode=1920x1080
rotate=270
[output]
name=HDMI-A-2
mode=off

Must be
made

dynamic!

21

Output manager concepts
● Based on Weston’s model with separate head/output
● ‘Head’ represents a display device: HDMI, eDP, DSI screens,
or virtual output windows

● ‘Output’ represents a grouped area of pixels to be shown on
a head

● Fully exposes capability of hardware and system as
separate concerns

22

Output manager concepts

23

Output manager concepts

24

Output manager benefits
● Supports complex usecases like clone mode, e.g. all RSE
showing same content from one pixel pipe

● Based on runtime dynamic API: window manager can
always make policy decisions and change configuration

● Dynamic output management allows for remote displays
being added/removed

● Output manager can query head information even if
disabled

● Output layout, positioning, etc determined by compositor

25

26

Output manager API
● List of weston_head available:
 struct weston_head *head = NULL;
 while ((head = weston_compositor_iterate_heads(ivi->compositor, head)))
 /* XXX: do something with head */

● Properties available for heads:
– name
– connection status (connected, disconnected)
– available modes (resolution)
– EDID/CEA display information
– content protection

27

Output manager API
● ‘Heads changed’ signal provided via standard Wayland
signal/listener mechanism

● Compositor iterates properties of all heads and configures
based on policy

● libweston applies new policy
● Further development required for example future complex
usecases

28

Future development

29

Input bindings: hardkey & CAN
● Input manager currently only supports runtime application
of key bindings

● Create helper module adding support for high-level CAN
bindings allowing use of CAN inputs

● Create helper module showing example configuration of
bindings (e.g. file on disk configuring actions to be taken
when keys pressed)

30

Input bindings: touch gesture
● Touch gesture bindings currently only support set number
of fingers
– Example: three fingers on screen triggers binding

● Add example swipe gesture recognition to allow switching

between applications

● Allow gesture navigation to be customised through

configuration

31

Input manager design

32

Multiple backend support
● Presently being developed by ADIT with support from
Collabora

● Multiple backends to support heterogeneous environment:
some output via DRM/KMS, other output into virtualised
display (safety-critical/IC domain), other output into remote
display (second-screen/RSE)

● Requires capability for multiple simultaneous hardware
backends

● Preliminary work being done before upstream

33

Miscellaneous items
● Support for overlapping outputs: required for efficient
virtualisation / remote display to present same content to
multiple displays without hardware assistance

● Advanced display configuration: allow shell to prepare UI for
reconfigured output before output becomes active

● libwayland integration with SMACK to query client label

34

CIAT integration
● Much work gone into upstream Weston test suite recently
● GL support for headless renderer designed to allow
aggressive testing on development or headless devices

● Not currently integrated with AGL testcases and CI
● After CES demo work complete, develop test plan and
integrate tests into AGL infrastructure

35

Thankyou!

daniels@collabora.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

