< ]

AUTOMOTIVE o .
GRADE Creating Services for AGL

AGL Training Class
October 20, 2022

Scott Murray (scott.murray@konsulko.com)

OOOOOOOOOO



TTTTTTTTTT

About me

Linux user/developer since 1994

Embedded Linux developer since 2000

Principal Software Engineer at Konsulko Group since
2014

Working on AGL on contract since 2016

* Yocto Project maintenance
* Demo development, integration, and maintenance

OOOOOOOOOO



Agenda

* AGL Services?

* AGL Services pre-Marlin

* AGL Services Today?

* protobufs and gRPC

* Implementing a AGL Service?
 Example: applaunchd

* Summary

* Future plans

AAAAAAAAAAAAAAA



What do we mean by AGL Services?

* Demo and/or example services in upstream AGL tree
e e.g. for HVAC, radio, media playback, navigation

e Used for AGL's own demonstration images

* Goal of serving as an example of building such
services on top of AGL

* Allow demonstrations with different front ends
e Qt and HTMLS5, now Flutter

TTTTTTTTTT
OOOOOOOOOO



AGL Services pre-Marlin

* Used now legacy application framework

* APIs implemented with JSON over WebSockets

* Linux SMACK Mandatory Access Control (MAC) used
similarly to Tizen

* Framework included packaging and installation

* Services built against this AGL specific framework
* Effectively tied a lot of code to the framework

AAAAAAAAAAAAAAA



AGL Services Today?

* The legacy application framework did not gain
traction with members, and it became difficult to
justify the maintenance effort

* As well, the technology choices for it became less

interesting as a forward looking technology
demonstrator
e SMACK, JSON over WebSockets

* Discussion started in 2021 about a replacement

OOOOOOOOOO



Leveraging existing FOSS

* Proposal from Collabora to replace the application
framework by leveraging widely used open-source
projects as much as possible

* Aim of providing a more relevant technology
demonstration with lower maintenance effort

 Some AGL demonstration services would be
reimplemented, but that would be avoided if a
suitable FOSS replacement was available

* Collabora proposal suggested using protobufs and
gRPC as basis for new APIs

AAAAAAAAAAAAAAA



protobufs

e protobufs = protocol buffers
* https://developers.google.com/protocol-buffers

* language-neutral, platform-neutral extensible
mechanism for serializing structured data
* Simple data definition language with code

generation for read/write of binary serialized data
 Support C++, Java, Rust, Dart, etc.

* Google project with a large userbase
* Widely used in cloud infrastructure



https://developers.google.com/protocol-buffers

gRPC

 gRPCis a modern open source high performance
Remote Procedure Call (RPC) framework
* https://grpc.io/

 RPC API specification is an extension of the protobufs
definition language

* Another Google project

* Like protobufs, large userbase and widely used in
cloud infrastructure

AAAAAAAAAAAAAAA


https://grpc.io/

Vehicle Signaling

* The legacy application framework included an API for
CAN signals and a "signal-composer" API for
abstracting signal sources for applications

* Replacement for these using existing FOSS projects?

* |nvestigation in 2021 found emerging Vehicle Signal
Specification (VSS) and Vehicle Information Service
(VIS) Server standards

* Decision to adopt KUKSA.val VIS server
* Extends VIS with a gRPC version of the API
* Futher discussion in "Using CAN Services with AGL" next

OOOOOOOOOO



AGL Services Today...

* applaunchd
» gRPC API for application start/stop/status
* agl-service-audiomixer
* Backend for VSS master volume signal
* Addition of a gRPC version of the APl from the legacy
application framework planned before CES 2023
* agl-service-hvac
* Backend for VSS HVAC signals

OOOOOOOOOO



Implementing a AGL Service?

AAAAAAAAAAAAAAA



Implementing a AGL Service?

* |f the APl is something not covered by VSS
* Define APl with gRPC
* Use that to build service daemon
* Otherwise
* Build service daemon that implements APl from VSS
 Example will be shown in "Using CAN Services with AGL"



Implementing a gRPC API Service

1. Define API
2. Generate API stubs
3. Build implementation on top of stubs

TTTTTTTTTT
GGGGG



Defining gRPC API

* RPC methods defined in .proto file:
https://grpc.io/docs/what-is-grpc/core-concepts/#se
rvice-definition

* There are naming conventions:
https://cloud.google.com/apis/design/naming_conv
ention

* And a style guide:
https://developers.google.com/protocol-buffers/doc
s/style

AAAAAAAAAAAAAAAA


https://grpc.io/docs/what-is-grpc/core-concepts/#service-definition
https://grpc.io/docs/what-is-grpc/core-concepts/#service-definition
https://cloud.google.com/apis/design/naming_convention
https://cloud.google.com/apis/design/naming_convention
https://developers.google.com/protocol-buffers/docs/style
https://developers.google.com/protocol-buffers/docs/style

TTTTTTTTTT

Defining gRPC API (continued)

* Keep compatibility concerns in mind
* Adding message fields or RPC calls is okay, removal
should be avoided without a clear deprecation plan
* Be consistent with message field tags, and avoid
changing them
* More information:
* https://earthly.dev/blog/backward-and-forward-compat
ibility/
* https://www.beautifulcode.co/blog/88-backward-and-fo

rward-compatibility-protobuf-versioning-serialization

OOOOOOOOOO


https://earthly.dev/blog/backward-and-forward-compatibility/
https://earthly.dev/blog/backward-and-forward-compatibility/
https://www.beautifulcode.co/blog/88-backward-and-forward-compatibility-protobuf-versioning-serialization
https://www.beautifulcode.co/blog/88-backward-and-forward-compatibility-protobuf-versioning-serialization

Generating API Stubs

 Manually with "protoc" protobufs compiler
* Example at
https://grpc.io/docs/languages/cpp/basics/#generating-
client-and-server-code
* Preferably with meson or CMake rules
* meson easier and greatly preferred for any new AGL
development
 Example at:
https://git.automotivelinux.org/src/applaunchd/tree/src
/meson.build?h=needlefish#n36

1
m THE
AUTOMATIVE LINUX
GRADE

OOOOOOOOOO


https://grpc.io/docs/languages/cpp/basics/#generating-client-and-server-code
https://grpc.io/docs/languages/cpp/basics/#generating-client-and-server-code
https://git.automotivelinux.org/src/applaunchd/tree/src/meson.build?h=needlefish#n36
https://git.automotivelinux.org/src/applaunchd/tree/src/meson.build?h=needlefish#n36

APIl Implementation

* gRPC has synchronous, asynchronous, and callback

server and client APIs in the C++ implementation

* Synchronous API simple but blocking unless manual
thread processing is used

* Asynchronous APl more complicated, but more flexible,
and handling some error cases is more straightforward

* Newer callback APl seems likely to replace the existing

asynchronous API over time
* Should be considered for new development

\I
m N

E
AUTOMIITIVE | IN U
GRADE FOUNDATION



Example: applaunchd

AAAAAAAAAAAAAAA



TTTTTTTTTT

applaunchd?

Qt based demo homescreen and launcher start
external applications

* e.g. mediaplayer, navigation, etc.

Had been using APl provided by af-main binding in
the legacy application framework

A replacement was required -> applaunchd
https://git.automotivelinux.org/src/applaunchd/

OOOOOOOOOO


https://git.automotivelinux.org/src/applaunchd/

applaunchd (Marlin)

* |nitial prototype implementation

* D-Bus activated daemon

* D-Bus API

* Applications enumerated via .desktop files
* Applications directly spawned by daemon

AAAAAAAAAAAAAAA



TTTTTTTTTT

applaunchd (Needlefish)

Daemon substantially reworked

Applications started with systemd template units
* Sandboxing configuration examples via optional systemd
override units

Application enumeration based on systemd unit

presence
e agl-app™@ *.service pattern matching

gRPC API

OOOOOOOOOO



applaunchd API

applauncher.proto - RPC definition:

service AppLauncher {
rpc StartApplication(StartRequest) returns (StartResponse) {}
rpc ListApplications (ListRequest) returns (ListResponse) {}

rpc GetStatusEvents (StatusRequest) returns (stream StatusResponse) {}

@
- -~ THE
AUTOMITIVE I IN
U

GRADE



applaunchd API (continued)

applauncher.proto - example messages:

message StartRequest {

string 1d = 1;

message StartResponse {
bool status = 1;

string message = 2;

AUTOMIITIVE
GRADE



applaunchd gRPC Implementation

e .proto file -> generated stubs
* meson.build rules for generation

e Uses gRPC synchronous server APl on top of
generated stubs to implement service

* Synchronous server APl used in applaunchd for now
* Seems sufficient for low volume of API calls
* Simplicity of implementation
* Plan to reimplement with the callback APl in the future as an
improved demo

THE
AUTOMIITIVE | IN U
GRADE FOUNDATION



applaunchd Source
Walkthrough

AAAAAAAAAAAAAAA



Future Development

AAAAAAAAAAAAAAA



TTTTTTTTTT

Plans for 2023

Finish minimal set of services for demos
 Audio mixer

Radio

Network configuration

Bluetooth configuration

Others?

Switch to using gRPC APl in KUKSA.val

Set up a global repo for AGL API .proto files
* Single source for server and client implementations

Implement a demonstration of service authorization
e systemd-creds, OAuth, ?

OOOOOOOOOO



