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About me

Linux user/developer since 1994

Embedded Linux developer since 2000

Principal Software Engineer at Konsulko Group since
2014

Working on AGL on contract since 2016

* Yocto Project maintenance
* Demo development, integration, and maintenance
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What do we mean by AGL Services?

* Demo and/or example services in upstream AGL tree
e e.g. for HVAC, radio, media playback, navigation

e Used for AGL's own demonstration images

* Goal of serving as an example of building such
services on top of AGL

* Allow demonstrations with different front ends
e Qt and HTMLS5, now Flutter
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AGL Services pre-Marlin

* Used now legacy application framework

* APIs implemented with JSON over WebSockets

* Linux SMACK Mandatory Access Control (MAC) used
similarly to Tizen

* Framework included packaging and installation

* Services built against this AGL specific framework
* Effectively tied a lot of code to the framework
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AGL Services Today?

* The legacy application framework did not gain
traction with members, and it became difficult to
justify the maintenance effort

* As well, the technology choices for it became less

interesting as a forward looking technology
demonstrator
e SMACK, JSON over WebSockets

* Discussion started in 2021 about a replacement
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Leveraging existing FOSS

* Proposal from Collabora to replace the application
framework by leveraging widely used open-source
projects as much as possible

* Aim of providing a more relevant technology
demonstration with lower maintenance effort

 Some AGL demonstration services would be
reimplemented, but that would be avoided if a
suitable FOSS replacement was available

* Collabora proposal suggested using protobufs and
gRPC as basis for new APIs
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protobufs

e protobufs = protocol buffers
* https://developers.google.com/protocol-buffers

* language-neutral, platform-neutral extensible
mechanism for serializing structured data
* Simple data definition language with code

generation for read/write of binary serialized data
 Support C++, Java, Rust, Dart, etc.

* Google project with a large userbase
* Widely used in cloud infrastructure



https://developers.google.com/protocol-buffers

gRPC

 gRPCis a modern open source high performance
Remote Procedure Call (RPC) framework
* https://grpc.io/

 RPC API specification is an extension of the protobufs
definition language

* Another Google project

* Like protobufs, large userbase and widely used in
cloud infrastructure
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https://grpc.io/

Vehicle Signaling

* The legacy application framework included an API for
CAN signals and a "signal-composer" API for
abstracting signal sources for applications

* Replacement for these using existing FOSS projects?

* |nvestigation in 2021 found emerging Vehicle Signal
Specification (VSS) and Vehicle Information Service
(VIS) Server standards

* Decision to adopt KUKSA.val VIS server
* Extends VIS with a gRPC version of the API
* Futher discussion in "Using CAN Services with AGL" next
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AGL Services Today...

* applaunchd
» gRPC API for application start/stop/status
* agl-service-audiomixer
* Backend for VSS master volume signal
* Addition of a gRPC version of the APl from the legacy
application framework planned before CES 2023
* agl-service-hvac
* Backend for VSS HVAC signals
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Implementing a AGL Service?
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Implementing a AGL Service?

* |f the APl is something not covered by VSS
* Define APl with gRPC
* Use that to build service daemon
* Otherwise
* Build service daemon that implements APl from VSS
 Example will be shown in "Using CAN Services with AGL"



Implementing a gRPC API Service

1. Define API
2. Generate API stubs
3. Build implementation on top of stubs
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Defining gRPC API

* RPC methods defined in .proto file:
https://grpc.io/docs/what-is-grpc/core-concepts/#se
rvice-definition

* There are naming conventions:
https://cloud.google.com/apis/design/naming_conv
ention

* And a style guide:
https://developers.google.com/protocol-buffers/doc
s/style
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https://grpc.io/docs/what-is-grpc/core-concepts/#service-definition
https://grpc.io/docs/what-is-grpc/core-concepts/#service-definition
https://cloud.google.com/apis/design/naming_convention
https://cloud.google.com/apis/design/naming_convention
https://developers.google.com/protocol-buffers/docs/style
https://developers.google.com/protocol-buffers/docs/style
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Defining gRPC API (continued)

* Keep compatibility concerns in mind
* Adding message fields or RPC calls is okay, removal
should be avoided without a clear deprecation plan
* Be consistent with message field tags, and avoid
changing them
* More information:
* https://earthly.dev/blog/backward-and-forward-compat
ibility/
* https://www.beautifulcode.co/blog/88-backward-and-fo

rward-compatibility-protobuf-versioning-serialization
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https://earthly.dev/blog/backward-and-forward-compatibility/
https://earthly.dev/blog/backward-and-forward-compatibility/
https://www.beautifulcode.co/blog/88-backward-and-forward-compatibility-protobuf-versioning-serialization
https://www.beautifulcode.co/blog/88-backward-and-forward-compatibility-protobuf-versioning-serialization

Generating API Stubs

 Manually with "protoc" protobufs compiler
* Example at
https://grpc.io/docs/languages/cpp/basics/#generating-
client-and-server-code
* Preferably with meson or CMake rules
* meson easier and greatly preferred for any new AGL
development
 Example at:
https://git.automotivelinux.org/src/applaunchd/tree/src
/meson.build?h=needlefish#n36
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https://grpc.io/docs/languages/cpp/basics/#generating-client-and-server-code
https://grpc.io/docs/languages/cpp/basics/#generating-client-and-server-code
https://git.automotivelinux.org/src/applaunchd/tree/src/meson.build?h=needlefish#n36
https://git.automotivelinux.org/src/applaunchd/tree/src/meson.build?h=needlefish#n36

APIl Implementation

* gRPC has synchronous, asynchronous, and callback

server and client APIs in the C++ implementation

* Synchronous API simple but blocking unless manual
thread processing is used

* Asynchronous APl more complicated, but more flexible,
and handling some error cases is more straightforward

* Newer callback APl seems likely to replace the existing

asynchronous API over time
* Should be considered for new development
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Example: applaunchd
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applaunchd?

Qt based demo homescreen and launcher start
external applications

* e.g. mediaplayer, navigation, etc.

Had been using APl provided by af-main binding in
the legacy application framework

A replacement was required -> applaunchd
https://git.automotivelinux.org/src/applaunchd/
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https://git.automotivelinux.org/src/applaunchd/

applaunchd (Marlin)

* |nitial prototype implementation

* D-Bus activated daemon

* D-Bus API

* Applications enumerated via .desktop files
* Applications directly spawned by daemon
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applaunchd (Needlefish)

Daemon substantially reworked

Applications started with systemd template units
* Sandboxing configuration examples via optional systemd
override units

Application enumeration based on systemd unit

presence
e agl-app™@ *.service pattern matching

gRPC API
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applaunchd API

applauncher.proto - RPC definition:

service AppLauncher {
rpc StartApplication(StartRequest) returns (StartResponse) {}
rpc ListApplications (ListRequest) returns (ListResponse) {}

rpc GetStatusEvents (StatusRequest) returns (stream StatusResponse) {}
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applaunchd API (continued)

applauncher.proto - example messages:

message StartRequest {

string 1d = 1;

message StartResponse {
bool status = 1;

string message = 2;
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applaunchd gRPC Implementation

e .proto file -> generated stubs
* meson.build rules for generation

e Uses gRPC synchronous server APl on top of
generated stubs to implement service

* Synchronous server APl used in applaunchd for now
* Seems sufficient for low volume of API calls
* Simplicity of implementation
* Plan to reimplement with the callback APl in the future as an
improved demo
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applaunchd Source
Walkthrough
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Future Development
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Plans for 2023

Finish minimal set of services for demos
 Audio mixer

Radio

Network configuration

Bluetooth configuration

Others?

Switch to using gRPC APl in KUKSA.val

Set up a global repo for AGL API .proto files
* Single source for server and client implementations

Implement a demonstration of service authorization
e systemd-creds, OAuth, ?
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