
Creating Services for AGL

AGL Training Class
October 20, 2022
Scott Murray (scott.murray@konsulko.com)

About me

• Linux user/developer since 1994
• Embedded Linux developer since 2000
• Principal Software Engineer at Konsulko Group since

2014
• Working on AGL on contract since 2016

• Yocto Project maintenance
• Demo development, integration, and maintenance

2

Agenda

• AGL Services?
• AGL Services pre-Marlin
• AGL Services Today?
• protobufs and gRPC
• Implementing a AGL Service?
• Example: applaunchd
• Summary
• Future plans

3

What do we mean by AGL Services?

• Demo and/or example services in upstream AGL tree
• e.g. for HVAC, radio, media playback, navigation

• Used for AGL's own demonstration images
• Goal of serving as an example of building such

services on top of AGL
• Allow demonstrations with different front ends

• Qt and HTML5, now Flutter

4

AGL Services pre-Marlin

• Used now legacy application framework
• APIs implemented with JSON over WebSockets
• Linux SMACK Mandatory Access Control (MAC) used

similarly to Tizen
• Framework included packaging and installation
• Services built against this AGL specific framework

• Effectively tied a lot of code to the framework

5

AGL Services Today?

• The legacy application framework did not gain
traction with members, and it became difficult to
justify the maintenance effort

• As well, the technology choices for it became less
interesting as a forward looking technology
demonstrator
• SMACK, JSON over WebSockets

• Discussion started in 2021 about a replacement

6

Leveraging existing FOSS

• Proposal from Collabora to replace the application
framework by leveraging widely used open-source
projects as much as possible

• Aim of providing a more relevant technology
demonstration with lower maintenance effort

• Some AGL demonstration services would be
reimplemented, but that would be avoided if a
suitable FOSS replacement was available

• Collabora proposal suggested using protobufs and
gRPC as basis for new APIs

7

protobufs

• protobufs = protocol buffers
• https://developers.google.com/protocol-buffers

• language-neutral, platform-neutral extensible
mechanism for serializing structured data

• Simple data definition language with code
generation for read/write of binary serialized data
• Support C++, Java, Rust, Dart, etc.

• Google project with a large userbase
• Widely used in cloud infrastructure

8

https://developers.google.com/protocol-buffers

gRPC

• gRPC is a modern open source high performance
Remote Procedure Call (RPC) framework
• https://grpc.io/

• RPC API specification is an extension of the protobufs
definition language

• Another Google project
• Like protobufs, large userbase and widely used in

cloud infrastructure

9

https://grpc.io/

Vehicle Signaling

• The legacy application framework included an API for
CAN signals and a "signal-composer" API for
abstracting signal sources for applications

• Replacement for these using existing FOSS projects?
• Investigation in 2021 found emerging Vehicle Signal

Specification (VSS) and Vehicle Information Service
(VIS) Server standards

• Decision to adopt KUKSA.val VIS server
• Extends VIS with a gRPC version of the API
• Futher discussion in "Using CAN Services with AGL" next

10

AGL Services Today…
• applaunchd

• gRPC API for application start/stop/status
• agl-service-audiomixer

• Backend for VSS master volume signal
• Addition of a gRPC version of the API from the legacy

application framework planned before CES 2023
• agl-service-hvac

• Backend for VSS HVAC signals

11

Implementing a AGL Service?

12

Implementing a AGL Service?

• If the API is something not covered by VSS
• Define API with gRPC
• Use that to build service daemon

• Otherwise
• Build service daemon that implements API from VSS
• Example will be shown in "Using CAN Services with AGL"

13

Implementing a gRPC API Service

1. Define API
2. Generate API stubs
3. Build implementation on top of stubs

14

Defining gRPC API

• RPC methods defined in .proto file:
https://grpc.io/docs/what-is-grpc/core-concepts/#se
rvice-definition

• There are naming conventions:
https://cloud.google.com/apis/design/naming_conv
ention

• And a style guide:
https://developers.google.com/protocol-buffers/doc
s/style

15

https://grpc.io/docs/what-is-grpc/core-concepts/#service-definition
https://grpc.io/docs/what-is-grpc/core-concepts/#service-definition
https://cloud.google.com/apis/design/naming_convention
https://cloud.google.com/apis/design/naming_convention
https://developers.google.com/protocol-buffers/docs/style
https://developers.google.com/protocol-buffers/docs/style

Defining gRPC API (continued)

• Keep compatibility concerns in mind
• Adding message fields or RPC calls is okay, removal

should be avoided without a clear deprecation plan
• Be consistent with message field tags, and avoid

changing them
• More information:

• https://earthly.dev/blog/backward-and-forward-compat
ibility/

• https://www.beautifulcode.co/blog/88-backward-and-fo
rward-compatibility-protobuf-versioning-serialization

16

https://earthly.dev/blog/backward-and-forward-compatibility/
https://earthly.dev/blog/backward-and-forward-compatibility/
https://www.beautifulcode.co/blog/88-backward-and-forward-compatibility-protobuf-versioning-serialization
https://www.beautifulcode.co/blog/88-backward-and-forward-compatibility-protobuf-versioning-serialization

Generating API Stubs

• Manually with "protoc" protobufs compiler
• Example at

https://grpc.io/docs/languages/cpp/basics/#generating-
client-and-server-code

• Preferably with meson or CMake rules
• meson easier and greatly preferred for any new AGL

development
• Example at:

https://git.automotivelinux.org/src/applaunchd/tree/src
/meson.build?h=needlefish#n36

17

https://grpc.io/docs/languages/cpp/basics/#generating-client-and-server-code
https://grpc.io/docs/languages/cpp/basics/#generating-client-and-server-code
https://git.automotivelinux.org/src/applaunchd/tree/src/meson.build?h=needlefish#n36
https://git.automotivelinux.org/src/applaunchd/tree/src/meson.build?h=needlefish#n36

API Implementation

• gRPC has synchronous, asynchronous, and callback
server and client APIs in the C++ implementation
• Synchronous API simple but blocking unless manual

thread processing is used
• Asynchronous API more complicated, but more flexible,

and handling some error cases is more straightforward
• Newer callback API seems likely to replace the existing

asynchronous API over time
• Should be considered for new development

18

Example: applaunchd

19

applaunchd?

• Qt based demo homescreen and launcher start
external applications
• e.g. mediaplayer, navigation, etc.

• Had been using API provided by af-main binding in
the legacy application framework

• A replacement was required -> applaunchd
• https://git.automotivelinux.org/src/applaunchd/

20

https://git.automotivelinux.org/src/applaunchd/

applaunchd (Marlin)

• Initial prototype implementation
• D-Bus activated daemon
• D-Bus API
• Applications enumerated via .desktop files
• Applications directly spawned by daemon

21

applaunchd (Needlefish)

• Daemon substantially reworked
• Applications started with systemd template units

• Sandboxing configuration examples via optional systemd
override units

• Application enumeration based on systemd unit
presence
• agl-app*@*.service pattern matching

• gRPC API

22

applaunchd API

applauncher.proto - RPC definition:

service AppLauncher {

 rpc StartApplication(StartRequest) returns (StartResponse) {}

 rpc ListApplications(ListRequest) returns (ListResponse) {}

 rpc GetStatusEvents(StatusRequest) returns (stream StatusResponse) {}

}

23

applaunchd API (continued)

applauncher.proto - example messages:

message StartRequest {

 string id = 1;

}

message StartResponse {

 bool status = 1;

 string message = 2;

}

24

applaunchd gRPC Implementation

• .proto file -> generated stubs
• meson.build rules for generation

• Uses gRPC synchronous server API on top of
generated stubs to implement service

• Synchronous server API used in applaunchd for now
• Seems sufficient for low volume of API calls
• Simplicity of implementation
• Plan to reimplement with the callback API in the future as an

improved demo

25

applaunchd Source
Walkthrough

26

Future Development

27

Plans for 2023

• Finish minimal set of services for demos
• Audio mixer
• Radio
• Network configuration
• Bluetooth configuration
• Others?

• Switch to using gRPC API in KUKSA.val
• Set up a global repo for AGL API .proto files

• Single source for server and client implementations
• Implement a demonstration of service authorization

• systemd-creds, OAuth, ?

28

