
Flutter and AGL
Deep Dive

AGL Workshop
Joel Winarske
Toyota Connected North America

Introduction
• Qualcomm Windows BSP organization (~8 years)

• 1st FTE in Redmond, WA
• MSM7200 to Snapdragon 855
• Window Phone, Windows on ARM
• Brought up UEFI on QC silicon - MSM8660
• Primary QC engineer involved in Windows on ARM bring-up. UEFI, HAL, SD, USB, WiFi, etc.
• Implemented Parking algorithm (multi-core)
• Integrated/Demonstrated first functional case of the Windows Kernel power collapsing to Steven Sinofsky
• Many other highlights

• INRIX (OpenCar) – Automotive Javascript UI/UX
• Chromium Browser customizations
• Re-wrote the OpenCar server. Went from 20 second load to 750ms. 1+GB RAM runtime footprint down to 1.5MB.
• Target Demos + device input drivers
• Made the Android solution a viable product
• Started work on embedded flutter - cross compile engine + store app demo

• PureWatercraft – Electric Drivetrain
• Owner of Throttle (Embedded Linux + UI) and Battery Charger
• Implemented J1939 Stack for auto-addressing multiple Batteries (STM32/C)
• Manufacturing stations
• Enabled series A fundings (General Motors)

• MSFT Surface - PLE Team (Post Launch Engineering)
• Surface ProX (8CX)

• Author/Creator of https://github.com/meta-flutter/meta-flutter

• Author/Owner of ivi-homescreen (flutter-auto) @ Toyota

2

https://github.com/meta-flutter/meta-flutter

Embedded Flutter

3

Components

•Development Environment
•Build Environment
• Target Environment

4

Flutter Engine

•Core component of the Flutter technology
•Written in C++ 17
•Common source tree for all platforms
• Desktop - Mac/Windows/Linux
•Mobile - Android / iOS
•Web
• Fuchsia
• Custom Embedder

5

Flutter Engine

•Build environment based on Google GN
•Dart + SKIA
• Impeller
•Custom Embedder Backend support
• OpenGL
• Software
•Metal
• Vulkan

6

Benefits

•Premium User Experience
•Developer Experience
•Commodity Talent Pool
•Reduced NRE
• Time To Market

7

Development Environment

8

Goals

• Shortest path to run a Flutter App on AGL
• Easy to change between Flutter SDK versions
• Support unique configurations
•Archive friendly
•Ubuntu 20+ support

9

Solution

• Flutter Workspace Automation

10

What does it do?

•Creates a Flutter Workspace
• Clones Flutter SDK
• Sets up local Flutter SDK config
• Sets up local pub cache
• Fetches defined artifacts and installs runtime

dependencies
• Clones defined repositories
• Creates setup_env.sh

11

Workspace Components

• Flutter SDK
• Sandboxed Flutter SDK config
• Sandboxed pub cache
• Platform Setup
• Runtime
• Binary
• Required Dependencies
• Custom-Device Config

• Development Repositories
• VS Code launch.json

12

Install Method – AGL Source Tree

• cd $AGL_TOP
• external/meta-

flutter/tools/setup_flutter_workspace.py meta-agl-
devel/meta-agl-
flutter/tools/flutter_workspace_config.json

13

Install Method – Tip of Tree

•mkdir -p $HOME/workspace && cd $HOME/workspace
• curl --proto '=https' --tlsv1.2 -

sSf https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL
/meta-agl-devel.git;a=blob_plain;f=meta-agl-
flutter/tools/flutter_workspace_config.json;hb=HEAD -
o flutter_workspace_config.json
• curl --proto '=https' --tlsv1.2 -

sSf https://raw.githubusercontent.com/meta-flutter/meta-
flutter/kirkstone/tools/setup_flutter_workspace.py | pytho
n3

14

Script Options
• ./setup_flutter_workspace.py --help
• usage: setup_flutter_workspace.py [-h] [--clean] [--workspace-cfg WORKSPACE_CFG] [--flutter-version FLUTTER_VERSION]
• [--target-user TARGET_USER] [--target-address TARGET_ADDRESS]
•

• options:
• -h, --help show this help message and exit
• --clean Wipes workspace clean
• --workspace-cfg WORKSPACE_CFG
• Selects custom workspace configuration file
• --flutter-version FLUTTER_VERSION
• Select flutter version. Overrides config file key: flutter-version
• --target-user TARGET_USER
• Sets custom-device target user name
• --target-address TARGET_ADDRESS
• Sets custom-device target address

15

Setup Caveats
• Flutter IDE tooling
• Flutter tooling uses File Watching to trigger events. This conflicts

with the setup script. To prevent this interaction run from a new
system terminal instance, or temporarily disable the tooling.

•Multiple ‘flutter’ entries in system path
• The setup script will attempt to remove the first occurring instance of

’flutter’ from PATH when it runs, if the resolved path matches. To
prevent this, remove all entries of ‘flutter’ from your path.

• Your Host Machine is expected to have hardware Hypervisor
support enabled
• If you explicitly want software Hypervisor support remove `-enable-

kvm -cpu kvm64` from the QEMU arguments in
flutter_workspace_config.json before running.

16

Debug on flutter-auto desktop

• Login via GDM Wayland Session
•Open Terminal and type
• source ${FLUTTER_WORKSPACE}/setup_env.sh
•Navigate to your favorite app
• flutter run –d desktop-auto

17

Debug on AGL QEMU

•Open Terminal and type
• source ${FLUTTER_WORKSPACE}/setup_env.sh
• Type qemu_run
•Wait until QEMU image reaches login prompt
•Run ssh –p 2222 root@localhost who to add remote

host to ~/.ssh/known_hosts
•Navigate to your favorite app
• flutter run –d AGL-qemu

18

Debug using Visual Studio Code

•Open Terminal and type
• source ${FLUTTER_WORKSPACE}/setup_env.sh
• code .

•Navigate to the debug pane
• Select application + runtime environment from drop

down combo box
•Click the play icon to start debug session

19

VS Code launch.json creation

• setup_flutter_workspace.py creates
a .vscode/launch.json file if one is not present
• It uses the repo configuration key `pubspec_path`
• If this key is present in the repo entry, then it will add

entry to .vscode/launch.json

20

How Custom Devices work
• flutter config –enable-custom-devices
• flutter doctor –vv

• Enables viewing ping interaction with custom device
• Ping callback is made by flutter tooling, if pingSucessRegex matches ping

response, then flutter tooling lists device as being available
• E.g. If not running a Wayland session, then desktop-auto will not be available

• Additional callbacks
• postBuild – creates staged bundle folder
• uninstall – removes bundle folder from target device
• install – installs staged bundle folder into /tmp folder of target device
• runDebug – invokes flutter-auto in platform environment

• See flutter_workspace_config.json -> “custom-device” for specific platform
implementation

21

Resources

•https://github.com/meta-flutter/meta-
flutter/tree/kirkstone/tools
•https://gerrit.automotivelinux.org/gerrit/gitweb?p=A

GL/meta-agl-devel.git;a=blob;f=meta-agl-
flutter/README.md
•https://github.com/flutter/flutter/wiki/Using-custom-

embedders-with-the-Flutter-CLI

22

https://github.com/meta-flutter/meta-flutter/tree/kirkstone/tools
https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-devel.git;a=blob;f=meta-agl-flutter/README.md
https://github.com/flutter/flutter/wiki/Using-custom-embedders-with-the-Flutter-CLI

Labs

• Setup Flutter Workspace
•Create AGL Flutter Application
•Debug AGL Flutter Application – CLI
•Debug AGL Flutter Application – Visual Studio Code

23

Setup Flutter Workspace (1/3)

•Copy and paste the command below

24

rm -rf ~/workspace
gnome-terminal --title="Setting Up Flutter Workspace" -- bash -c "mkdir -p $HOME/workspace && cd
$HOME/workspace && wget https://raw.githubusercontent.com/meta-flutter/meta-
flutter/kirkstone/tools/flutter_workspace_config.json && curl --proto '=https' --tlsv1.2 -sSf
https://raw.githubusercontent.com/meta-flutter/meta-
flutter/kirkstone/tools/setup_flutter_workspace.py | python3 2>&1 |tee ~/workspace/setup.log"

Setup Flutter Workspace (2/3)

25

• The command brings up a new terminal to set up
the flutter workspace.

Setup Flutter Workspace (3/3)

•Once the setup is completed, the "Setting Up Flutter
Workspace" terminal will close automatically.

26

Create AGL Flutter Application (1/2)

• Setup environment with the command below:

27

source ${FLUTTER_WORKSPACE}/setup_env.sh

Create AGL Flutter Application (2/2)

28

cd ${FLUTTER_WORKSPACE}/app
flutter create hello_world -t app
cd hello_world
flutter run -d desktop-auto

Debug AGL Flutter Application – CLI

29

source workspace/setup_env.sh
cd workspace/app/gallery
flutter run -d desktop-auto

Debug AGL Flutter Application – Visual Studio Code (1/3)

30

cd workspace
source setup_env.sh
code .

Debug AGL Flutter Application – Visual Studio Code (2/3)

31

1

23

Debug AGL Flutter Application – Visual Studio Code (3/3)

32

Linux GTK Embedder

•Canonical is primary development partner
• Flutter SDK only supports host only builds
• No cross compilation support

•Runtime library dependency list is very big
•Applicable to Desktop class processors
•meta-flutter supports cross compiling the required

target artifacts
• Flutter SDK support is missing to consume artifacts

33

Platform Views

•Using Platform views in Flutter dramatically decreases
your potential framerate
•Avoid usage
• flutter-auto does not support for this reason

34

Platform Channels

•Dart - Native code bridge
•Platform Channel communication adds ~10ms latency

per message
• Suitable for lifecycle calls or to support pre-existing

platform constructs

35

Foreign Function Interface (FFI)

• Enables calling native C APIS from Dart code
• Zero latency
•No message passing
•No async/await on Dart
•No garbage collection

36

1P Linux Plugins

• 1P Linux Plugins are only intended for the Linux GTK embedder
• The use of the term “Linux Plugins” was poorly chosen
• In no way does it mean that “1P Linux Plugins” work with any

Flutter embedder that runs on Linux
• It should really be “1P Linux GTK Plugins”
• The fact “1P Linux Plugin” Dart code runs in Flutter Debug

builds is a Flutter bug and tracked here:
• https://github.com/flutter/flutter/issues/103660

• Some solutions involve forking Flutter SDK to support a custom
plugin type (not linux). Not a longterm solution

37

https://github.com/flutter/flutter/issues/103660

Build Environment

38

Components

• Yocto Layers
•meta-agl-demo
•meta-agl-devel/meta-agl-flutter
•meta-flutter

• flutter-auto
• Toyota ivi-homescreen agl branch

39

meta-agl-demo

https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL%2Fmeta-agl-demo.git

40

https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL%2Fmeta-agl-demo.git

Flutter Image

• agl-ivi-demo-platform-flutter
• Runtime = Release
• Flutter Apps
• Dashboard
• HAVC
• Navigation
• Media Player

41

meta-agl-devel

https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-devel.git

42

https://gerrit.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-devel.git

Images

• agl-image-flutter-runtimedebug
• Runtime = Debug
• SSH server
• Flutter Engine SDK

• agl-image-flutter-runtimeprofile
• Runtime = Profile
• Same pattern as agl-image-flutter-runtimedebug + Apps

• agl-image-flutter-runtimerelease
• Runtime = Release
• Same pattern as agl-image-flutter-runtimerelease

43

bbappends

•Disables Gstreamer build flag for flutter-auto
• Enables network access for Archiver
• Flutter Gallery
• Adds User Service

44

meta-flutter

https://github.com/meta-flutter/meta-flutter

45

https://github.com/meta-flutter/meta-flutter

Flutter App Bundle

• <Bundle folder>
• data
• flutter_assets

• lib
• libapp.so

•Origin - Flutter GTK runtime folder structure

46

recipes-devtools

•depot-tools – consumed by engine build
• flutter-rust-bridge-example
•membrane-example
•Rust (proc2) support

47

recipes-graphics
• agl-flutter-apps
• flutter-app-igalia-homescreen
• flutter-app-pumped-fuel-ped

• flutter-apps
• flutter-gallery
• flutter-test-animated-background
• flutter-test-frb
• flutter-test-localization
• flutter-test-membrane
• flutter-test-plugins
• flutter-test-secure-storage
• flutter-test-texture-egl
• flutter-test-video-player

48

recipes-graphics

• flutter-engine
• flutter-pi
• flutter-sdk
• sony
• toyota
• flutter-auto – AGL branch
• ivi-homescreen – Quarterly release

49

tools

• Flutter Workspace Automation
• flutter_workspace_config.json
• Specific to builds available on meta-flutter

• setup_workspace_flutter.py
• Authoritative Repo

50

Kirkstone CI Jobs

• Linux-dummy – Layer Canary Build
•AGL QEMU x86_64 – master
•AGL Renesas M3 - master
• imx8mmevk
•Qualcomm DragonBoard 410C + 820C
•Raspberry PI Zero 2W
• STM32MP15
•Workspace

51

Dunfell CI Jobs

• Linux-dummy – Layer Canary Build
•Nvidia Jetson Nano
•Nvidia Jetson Xavier NX
•RPI4
• STM32MP15
•Variscite dart-mx8m-mini

52

Honister CI Jobs

• Linux-dummy – Layer Canary Build
•RPI Zero2W
•RPI3 32-bit
•RPI3 64-bit
•RPI4 32-bit
•RPI4 64-bit

53

flutter-auto

https://github.com/toyota-connected/ivi-homescreen/tree/agl

54

https://github.com/toyota-connected/ivi-homescreen/tree/agl

Features
• Wayland based
• agl_shell
• xdg_shell

• Same code runs on Desktop and Target
• Multi-View
• Single Process Multiple Engines/Surfaces

• Backend support (compile time)
• EGL
• Vulkan

• JSON configuration
• Bundle Override Logic
• more planned…

55

Command Line Options
• --a={int value} - Sets the Engine's initial state of Accessibility Feature support.

Requires an integer value.
• --c - Disables the cursor.
• --d - Outputs backend debug information. If Vulkan and Validation Layer is available,

it will be loaded.
• --f - Sets window to fullscreen.
• --w={int value} - Sets View width. Requires an integer value.
• --h={int value} - Sets View height. Requires an integer value.
• --t={String} - Sets cursor theme to load. e.g. --t=DMZ-White
• --b={path to folder} - Sets the Bundle Path.
• --j={json config} - Sets the JSON configuration file.
• Dart VM arguments - any additional command line arguments not handled get

directly passed to the Dart VM instance.

56

JSON Configuration

•Parameter Loading Order
• JSON – View
• JSON – Global
• CLI Arguments

• If there are redundant key/values they will be
overwritten.
• e.g., CLI Arguments override all

57

Bundle Override Logic

•Optional paths are checked first. If file exists, it will be
used.
• <Bundle folder>

• data
• flutter_assets
• icudtl.dat <optional>

• lib
• libapp.so
• libflutter_engine.so <optional>

58

Default Build Flags
• BUILD_BACKEND_WAYLAND_DRM:BOOL=OFF

• BUILD_BACKEND_WAYLAND_EGL:BOOL=ON

• BUILD_EGL_TRANSPARENCY:BOOL=ON

• BUILD_PLUGIN_ACCESSIBILITY:BOOL=ON

• BUILD_PLUGIN_GSTREAMER_EGL:BOOL=ON

• BUILD_PLUGIN_ISOLATE:BOOL=ON

• BUILD_PLUGIN_MOUSE_CURSOR:BOOL=ON

• BUILD_PLUGIN_NAVIGATION:BOOL=ON

• BUILD_PLUGIN_OPENGL_TEXTURE:BOOL=ON

• BUILD_PLUGIN_PACKAGE_INFO:BOOL=ON

• BUILD_PLUGIN_PLATFORM:BOOL=ON

• BUILD_PLUGIN_PLATFORM_VIEW:BOOL=OFF

• BUILD_PLUGIN_RESTORATION:BOOL=ON

• BUILD_PLUGIN_SECURE_STORAGE:BOOL=OFF

• BUILD_PLUGIN_TEXT_INPUT:BOOL=ON

• BUILD_PLUGIN_URL_LAUNCHER:BOOL=ON

• BUILD_TEXTURE_TEST_EGL:BOOL=OFF

59

CI Job

•https://github.com/toyota-connected/ivi-
homescreen/blob/agl/.github/workflows/flutter-auto-
linux.yml

60

https://github.com/toyota-connected/ivi-homescreen/blob/main/.github/workflows/ivi-homescreen-linux.yml

Labs

•Run flutter apps in runtime=release image
•Auto-run flutter app using system service
•Multi-View
•Run flutter app in runtime=profile image

61

Run flutter apps in runtime=release image (1/5)

• Setup a Flutter workspace for flutter-auto

62

$ mkdir workspace
$ cd workspace
$ wget https://raw.githubusercontent.com/meta-flutter/flutter-auto-
demo/main/run_flutter_app_in_release_image/flutter_workspace_config.json
$ wget https://raw.githubusercontent.com/meta-flutter/meta-
flutter/kirkstone/tools/setup_flutter_workspace.py
$ python3 setup_flutter_workspace.py

https://raw.githubusercontent.com/meta-flutter/flutter-auto-demo/main/run_flutter_app_in_release_image/flutter_workspace_config.json
https://raw.githubusercontent.com/meta-flutter/meta-flutter/kirkstone/tools/setup_flutter_workspace.py

Run flutter apps in runtime=release image (2/5)

63

Run flutter apps in runtime=release image (3/5)

64

$ source setup_env.sh
$ qemu_run

Setup the environment and run the image on QEMU

Run flutter apps in runtime=release image (4/5)

65

• Log in as root, delete agl-driver's password, exit

• Login as agl-driver

$ passwd -d agl-driver
$ exit

Run flutter apps in runtime=release image (5/5)

66

• Log in as agl-driver, and run the gallery app
$ flutter-auto --b=/usr/share/flutter/gallery --window-type=BG

Auto-run flutter app using system service (1/3)

•Run release image on QEMU and login as root

67

$ source setup_env.sh
$ qemu_run

Auto-run flutter app using system service (2/3)

• copy flutter-gallery.service to /usr/lib/systemd/user
• make a symbolic link for flutter-gallery.service in /usr/lib/systemd/user/agl-

session.target.wants
• reboot

68

$ cd /usr/lib/systemd/user
$ wget https://raw.githubusercontent.com/meta-flutter/flutter-auto-
demo/main/auto_run_flutter_app_using_system_service_with_release_image/flutter-gallery.service
$ cd agl-session.target.wants
$ ln -s ../flutter-gallery.service flutter-gallery.service
$ reboot

https://raw.githubusercontent.com/meta-flutter/flutter-auto-demo/main/auto_run_flutter_app_using_system_service_with_release_image/flutter-gallery.service

Auto-run flutter app using system service (3/3)

•After reboot, the gallery app runs automatically

69

Multi-View (1/4)

•Run release image on QEMU and login as agl-driver

70

Multi-View (2/4)

•Copy multi-view.json to /tmp

71

$ wget https://raw.githubusercontent.com/meta-flutter/flutter-auto-
demo/main/run-multi-apps_with_release_image/multi-view.json -P /tmp

Multi-View (3/4)

•Content of multi-view.json

72

Multi-View (4/4)

•Run flutter-auto with the json file
•3 Apps run simultaneously

73

$ flutter-auto --j=/tmp/multi-view.json

Run flutter app in runtime=profile image (1/5)

•Make a Flutter workspace for flutter-auto

74

$ mkdir workspace
$ cd workspace
$ wget https://github.com/meta-flutter/flutter-auto-
demo/blob/main/run_flutter_app_in_profile_image/flutter
_workspace_config.json
$ wget https://raw.githubusercontent.com/meta-
flutter/meta-
flutter/kirkstone/tools/setup_flutter_workspace.py
$ python3 setup_flutter_workspace.py

https://github.com/meta-flutter/flutter-auto-demo/blob/main/run_flutter_app_in_profile_image/flutter_workspace_config.json
https://raw.githubusercontent.com/meta-flutter/meta-flutter/kirkstone/tools/setup_flutter_workspace.py

Run flutter app in runtime=profile image (2/5)

• Setup environment

• Login as root
•Delete agl-driver's password

• Login as agl-driver

75

$ source setup_env.sh
$ qemu_run

$ passwd -d agl-driver
$ exit

Run flutter app in runtime=profile image (3/5)

•Run the gallery app

•Note the URL which Dart VM service is listening on

76

$ flutter-auto --window-type=BG --b=/usr/share/flutter/gallery --f --
observatory-host=0.0.0.0 --observatory-port=1234

Run flutter app in runtime=profile image (4/5)
• Run the following commands on the host

• Note the output shows the URL for debugger and profiler.
• Press v to bring up the debugger and profiler on Chrome browser

77

$ flutter pub get
$ flutter attach --device-id=AGL-qemu --debug-url=http://127.0.0.1:1234/YLSuCEGH52A=/

Run flutter app in runtime=profile image (5/5)

78

Resources

•https://docs.flutter.dev
•https://github.com/flutter/flutter/wiki
•https://www.yoctoproject.org
•https://github.com/meta-flutter/meta-flutter
•https://github.com/toyota-connected/ivi-homescreen
•https://www.automotivelinux.org
•https://docs.automotivelinux.org/en/needlefish/#5_C

omponent_Documentation/1_agl-compositor/

79

https://docs.flutter.dev/
https://github.com/flutter/flutter/wiki
https://www.yoctoproject.org/
https://github.com/meta-flutter/meta-flutter
https://github.com/toyota-connected/ivi-homescreen
https://docs.automotivelinux.org/en/needlefish/
https://docs.automotivelinux.org/en/needlefish/

