
App Framework Update

Automotive Grade Linux / Collabora

Daniel Stone <daniels@collabora.com>
Simon McVittie

mailto:daniels@collabora.com

2

Agenda and overview
● Introduce Simon McVittie (Collabora colleague)
● Recap of March VF2F app FW discussion
● Overview of existing AGL app/service management (all EGs)
● Development proposal for app FW evolution
● Overview of existing OSS solutions
● Discussion of usecases and targets for development

3

Current IVI App FW

4

IVI App FW
(current)

5

IVI App FW
(current)

6

IVI App FW
(current)

7

IVI app framework: takeaways
● Three large functional areas:
● System management (afm-system-daemon)
● Session management (afm-user-daemon)
● Service and IPC mediation (afm-binder)
● Authorization handled via Cynara/SMACK
● App installation and discovery through W3C .wgt format
● Support native apps (Qt, Flutter) as well as WAM
● Most mature solution in AGL

8

PR App FW proposal

9

PR App FW
(proposal)

10

PR Base
System

(proposal)

11

PR app framework: takeaways
● App Framework for PR currently undefined
● Common functional areas:

– Service lifecycle management (launch/terminate)
– System and service logging management

● Native apps (Flutter)
● Integration with VirtIO (common ‘HAL’)
● Clear overlap with IVI EG, different implementation

12

IC App management proposal?

13

IC App FW
(proposal)

14

IC IPC
(proposal)

15

IC app framework: takeaways
● App Framework for IC currently undefined
● Static service management?
● Unclear how services will start and be monitored
● Native apps all run in single IC container
● Design of IC-custom IPC API

– Based on UNIX sockets (local)
– Based on ICCOM (distant)

● Most limited usecases

16

Container & mesh proposal

17

Container & mesh: takeaways
● Common and cloud-inspired tooling and design (AWS)
● All services built into containers
● Tooling like Envoy/Traefik for inter-service routing
● IPC like gRPC or similar
● Service management with Kubernetes
● Based on explicit declaration of services and interconnects
● Cloud tooling embraces failure: retry, restart, capture
● Cloud tooling based on dynamic workload definition
● More complex than IC/IVI usecases!

18

Development proposal

19

20

Development status
● Resourcing for developers delayed due to worldwide supply-

chain issues (silicon delay)
● Initial high-level research discussed in March F2F
● Proposal approved by AGL members
● Further research and high-level design discussed here
● Agree areas of priority for design or active development
● Work with and enable other AGL EGs

21

IVI EG development principles
● Advance state of the art for automotive software
● Close alignment with (& contribution to) upstream
● Avoid duplication of PR/IC/VirtIO/Mesh development effort
● Support native & web apps
● Limited development resources: priority is value for money
● Provide building blocks not full solutions
● Clear focus on specific development areas

22

Current development in AGL

IVI App FW PR EG IC EG Virt EG Mesh EG

Service
provision

✔️ ✔ ✔️

App lifecycle ✔️ ✔️

IPC
framework

✔️ ✔️

Service
bindings

✔️ ✔️

23

Current development in open source

systemd Flatpak Kubernetes Envoy gRPC

Service
provision

✔️ ✔ ✔×️

App lifecycle ✔️ ✔️ ✔️
IPC

framework
✔️

Service
bindings

✔️ ✔️

Note: gRPC provides service IPC but no native discovery/enumeration

24

App lifecycle scope
● AGL IVI must be able to launch applications on demand

– Launch from homescreen (direct interaction)
– Launch from other-app (‘intent’ or indirect)

● Applications should be monitored and restarted on crash
● Heartbeat mechanism to ensure app responsiveness
● Capture logs and enable developers to test applications
● Support native & web applications
● Align closely with containerised usecases
● Allow for security policy and usage limits

25

App lifecycle out-of-scope
● Not intended for direct deployment to production
● Not intended to provide ‘app store’ distribution
● Not intended to provide complete system security model
● Not intended to duplicate existing PR/IC/mesh service

models
● Not intended to create bespoke IPC mechanism
● Not intended to comply with functional safety framework
● Focus on development usecases and alignment with

upstream + other EGs

26

Service provision scope
● Allow AGL system services to be discovered and enumerated
● Services activated on demand by application or system
● Services running within system sandbox
● Services given information about security context of

requesting application (including WAM context)
● Allow services to be written in any language
● Allow services to use most appropriate IPC mechanism

(UNIX socket, TCP/gRPC, D-Bus, etc ...)

27

Service provision out-of-scope
● No custom IPC mechanism: there are already many mature

examples: gRPC, ICCOM, D-Bus, etc
● Avoid reimplementation of specific services: reuse open

base frameworks unless necessary
● Do not dictate runtime/container mechanisms: allow reuse

of whatever makes the most sense
● Delegate system-wide security policy to individual EGs:

implementations are incompatible, no point adding more

28

Possible upstream bases
● systemd provides most of what we need today

– Scoped per-session management, logging
– Isolation and security via cgroups, seccomp, AppArmor
– Launch native apps from root filesystem

● Flatpak provides further isolation through containers
– Containerised applications built on common runtime
– Base runtimes built with Yocto
– OS services exposed via device nodes, D-Bus, TCP
– No notion of lifecycle or activation

29

Integration of app framework
● Identify most appropriate system services to provide
● Examples of running system services under systemd with

activation and lifecycle management
● Use systemd system scope for services (OEM/Tier-1)
● Package app-relevant part of AGL UCB into Flatpak runtime
● Use systemd session scope for apps (ISV)
● Examples of native Flatpak apps, activated by systemd
● Sensible security policies and use limits for example apps
● Document both to show clear best principles

30

Development outcomes
● A stripped-back UCB, divided into tier-1/OEM and ISV worlds
● Examples of how to develop services/applications which

can be useful for integration into all AGL profiles
● Provide a ‘halfway house’ between native applications

running directly on system (IC, PR) and containerised
applications (state-of-the-art IVI, mesh)

● Continue to support WAM and HTML-based apps
● Clear documentation and design principles
● Reuse upstream design decisions and principles

31

Integration challenges
● Writing AGL binder definitions for every service makes

services available to WAM, but means that every service
must be wrapped and multiple definitions maintained

● Need to provide WAM bridges for RPC mechanisms (gRPC, D-
Bus?)

● Going from current UCB to new world with sensible
transitions

● Unified CES demonstrator between IVI/IC already based on
outdated branches

32

Open questions
● What do we demonstrate at CES, and how do we show it?
● How do we balance the demands and conflicting designs of

other AGL EGs?
● What is the most valuable contribution to AGL?
● What is the most valuable contribution to the community?
● How are we resourcing the demo apps, and who is doing

non-system work (e.g. UI and design)?
● Is the proposed timeline viable for Marlin?
● Are the suggested usecases defined and agreed?

33

Thank you!

