
Using CAN Services with AGL

AGL Training Class
October 20, 2022
Scott Murray (scott.murray@konsulko.com)

About me

• Linux user/developer since 1994
• Embedded Linux developer since 2000
• Principal Software Engineer at Konsulko Group since

2014
• Working on AGL on contract since 2016

• Yocto Project maintenance
• Demo development, integration, and maintenance

2

Agenda

• AGL CAN services pre-Marlin
• AGL CAN services today?
• Vehicle Signaling Schema (VSS), Vehicle Information

Server (VIS), and KUKSA.val
• VSS/VIS Examples
• CAN to VSS Configuration
• VSS Client Example: agl-service-hvac
• Future development

3

CAN Services pre-Marlin

• In the legacy application framework vehicle signaling
was enabled with:
• agl-service-can-low-level
• agl-service-signal-composer

• API bindings developed by IoT.bzh for AGL
• Used in the demo platform to implement dashboard,

HVAC, and steering wheel demonstrations

4

agl-service-can-low-level

• OpenXC XML-based CAN signal definitions
• OpenXC was a Ford open-source project
• No obvious user community

• Code generator to create signal definitions plugin for
API service
• Based on a couple of OpenXC libraries

• API with signal subscription, write, etc.
• Some degree of J1939 and ISOTP support

• Not fully exercised in upstream AGL
• ISOTP not enabled by default in build

5

agl-service-signal-composer

• Service to abstract signals from multiple sources
• CAN, GPIO, etc.

• Configuration via JSON files
• Some provision for runtime loading of configuration

• Plugin architecture and signal processing heavily tied
to legacy application framework architecture

6

AGL CAN Services Today?

• During the discussions around replacing the legacy
application framework there was no obvious
candidate to replace agl-service-can-low-level
• AGL members all have their own implementations
• No FOSS project in the space with a significant userbase

• No desire to invest the effort to build a similar API
without member engagement
• Focus on technology demonstrations using Linux

SocketCAN

7

AGL CAN Services Today? (continued)

• Investigation in 2021 found emerging Vehicle Signal
Specification (VSS) and Vehicle Information Service
(VIS) Server standards

• Initial investigation suggested that a VIS server would
provide capabilities similar to
agl-service-signal-composer

8

VSS

• Vehicle Signal Specification
• Open source project started under COVESA

• https://github.com/COVESA/vehicle_signal_specification
• Developed by BMW, Volvo, Bosch, JLR, etc.
• Hierarchical signal schema in JSON

• Other formats also possible
• Schema currently at version 3.0

9

https://github.com/COVESA/vehicle_signal_specification

VISS

• Vehicle Information Service (VIS) Server
• Open source project started under COVESA
• Developed by BMW, Volvo, Bosch, JLR, etc.
• Standardization process underway with W3C

• https://w3c.github.io/automotive/vehicle_data/vehicle_
information_service.html

• Websocket API to access VSS signals
• Reference implementation in Go

• https://github.com/w3c/automotive-viss2
• Also an implementation in C++, KUKSA.val

10

https://w3c.github.io/automotive/vehicle_data/vehicle_information_service.html
https://w3c.github.io/automotive/vehicle_data/vehicle_information_service.html
https://github.com/w3c/automotive-viss2

KUKSA.val

• https://github.com/eclipse/kuksa.val
• Primarily developed by Bosch, with contributions

from others
• Under active development

• Extends VISS with a gRPC version of the API
• JSON web token (JWT) authorization mechanism
• Python and Go client libraries, with examples
• Example feeder clients to push signal data

• Implemented in Python using client library

11

https://github.com/eclipse/kuksa.val

KUKSA.val (continued)

• Provides mechanism for adding new signals via
overlay JSON files
• Used in AGL demo for steering wheel switch and a few

other signals
• See:

https://git.automotivelinux.org/AGL/meta-agl-demo/tre
e/recipes-connectivity/kuksa-val/kuksa-val-agl/00-agl_vs
s_overlay_2.2.json?h=needlefish

12

https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-val-agl/00-agl_vss_overlay_2.2.json?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-val-agl/00-agl_vss_overlay_2.2.json?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-val-agl/00-agl_vss_overlay_2.2.json?h=needlefish

KUKSA.val Feeders

• DBC feeder
• Pushes selected CAN data to configured VSS signals
• Uses DBC (CAN database) file for CAN signal definitions

• DBC format comes from Vector, but is documented
• YAML configuration file for CAN to VSS signal mapping

• GPS feeder
• Pushes location data from gpsd

• Replay feeder
• Can be used to replay a stream of VIS updates

13

VSS Example

• ABS error signal (Vehicle.ADAS.ABS.Error):
"Error": {
 "datatype": "boolean",
 "description": "Indicates if ABS incurred
an error condition. True = Error. False = No
Error.",
 "type": "sensor",
 "uuid": "cd2b0e86aa1f5021a9bb7f6bda1cbe0f"
},

14

VSS Example Breakdown

• Data types
• boolean, float, integer, unsigned integer, string

• Signal types
• sensor = input
• actuator = output

• In VIS specification sensors are read-only!
• However, KUSKA.val allows writing to sensors to enable

more flexible broker-like architectures
• KUKSA.val also adds the concept of target values for

actuator signals to separate current versus target values

15

VIS Get Example

• See more at
https://w3c.github.io/automotive/vehicle_data/vehicle_infor
mation_service.html#message-structure

• Request
{

"action": "get",
"path":

"Signal.Drivetrain.InternalCombustionEngine.RPM",
"requestId": "8756"

}

16

https://w3c.github.io/automotive/vehicle_data/vehicle_information_service.html#message-structure
https://w3c.github.io/automotive/vehicle_data/vehicle_information_service.html#message-structure

VIS Get Example (continued)

• Reply
{
"action": "get",
"requestId": "8756",
"value": 2372,
"timestamp": 1489985044000

}

17

CAN to VSS Configuration

18

DBC Feeder Configuration

1. CAN signal configuration in DBC file
2. CAN signal to VSS signal configuration in

mapping.yaml
3. DBC feeder configuration in .ini file

19

CAN Signal DBC configuration

• Create with Vector's tools
• Create by hand

• https://www.csselectronics.com/pages/can-dbc-file-dat
abase-intro

• https://docs.openvehicles.com/en/latest/components/v
ehicle_dbc/docs/dbc-primer.html

• AGL using:
https://git.automotivelinux.org/AGL/meta-agl-demo
/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feed
er/agl-vcar.dbc?h=needlefish

20

https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://docs.openvehicles.com/en/latest/components/vehicle_dbc/docs/dbc-primer.html
https://docs.openvehicles.com/en/latest/components/vehicle_dbc/docs/dbc-primer.html
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/agl-vcar.dbc?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/agl-vcar.dbc?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/agl-vcar.dbc?h=needlefish

CAN to VSS configuration

• DBC feeder mapping of CAN signal from DBC file to
VSS signal

• Some simple transforms possible: value mapping,
math (e.g. for scaling), see:
https://github.com/eclipse/kuksa.val.feeders/tree/m
ain/dbc2val#usage-of-the-file-mappingyml

• AGL using:
https://git.automotivelinux.org/AGL/meta-agl-demo
/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feed
er/mapping.yml?h=needlefish

21

https://github.com/eclipse/kuksa.val.feeders/tree/main/dbc2val#usage-of-the-file-mappingyml
https://github.com/eclipse/kuksa.val.feeders/tree/main/dbc2val#usage-of-the-file-mappingyml
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/mapping.yml?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/mapping.yml?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/mapping.yml?h=needlefish

DBC Feeder .ini Configuration

• DBC feeder configuration file to specify:
• DBC file
• mapping yaml file
• CAN device
• KUKSA.val server location
• KUKSA.val authorization token

• AGL using:
https://git.automotivelinux.org/AGL/meta-agl-demo
/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feed
er/config.ini?h=needlefish

22

https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/config.ini?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/config.ini?h=needlefish
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feeder/config.ini?h=needlefish

DBC Feeder config.ini
[general]

use case:

switch between databroker and kuksa

default kuksa

usecase = kuksa

VSS mapping file

mapping=/etc/kuksa-dbc-feeder/mapping.yml

[kuksa_val]

kuksa VSS server address

server=wss://localhost:8090

JWT security token file

token=/etc/kuksa-dbc-feeder/dbc_feeder.json.token

[can]

CAN port

port=can0

#Enable SAE-J1939 Mode. False: ignore

j1939=False

DBC file used to parse CAN messages

dbcfile=/etc/kuksa-dbc-feeder/agl-vcar.dbc

23

Using Your Own Configuration?

• For testing during development, perhaps start by
editing files in /etc/kuksa-dbc-feeder on target

• To apply new configuration for your own demos,
either:
• Potentially submit change against meta-agl-demo

upstream
• Replace configuration files with a bbappend against

kuksa-dbc-feeder if you have your own local layer

24

VSS Client Example:
agl-service-hvac

25

agl-service-hvac

• In legacy application framework provided a simple
temperature and fan speed API
• Used by the Qt demo HVAC application
• Originally used SocketCAN directly to drive HVAC

controller
• Was converted to use agl-service-can-low-level API

• With the removal of the application framework, code
leveraged to implement a new service backend for
VSS HVAC signals

26

VSS HVAC Schema

• VSS includes a full set of HVAC signals
• 4 rows
• left and right sides
• fan speed and direction
• temperature

• Example signals:
• Vehicle.Cabin.HVAC.Station.Row1.Left.FanSpeed
• Vehicle.Cabin.HVAC.Station.Row2.Right.Temperature

27

Implementation

• https://git.automotivelinux.org/apps/agl-service-hvac/
• Currently WebSocket client via Boost library

• Plan is to migrate to KUKSA.val gRPC API
• Listens for Row1 Left and Right fan speed and

temperature actuator changes
• Pushes fan speed updates out to HVAC controller via

CAN
• Switched back to doing direct SocketCAN writes

• Pushes temperature updates out to LEDs in demo
unit via GPIO

28

https://git.automotivelinux.org/apps/agl-service-hvac/

agl-service-hvac Source
Walkthrough

29

Future Development

30

CES 2023 Development

• Potentially convert agl-service-hvac,
agl-service-audiomixer, and libqtappfw client to the
KUKSA.val gRPC API

• The steering wheel demonstration has been
converted from LIN to CAN, finish integration

31

Post-CES Plans

• Complete transition to KUKSA.val gRPC API
• Investigate options for authorization token handling

• Currently installing with applications during build as
stopgap

• Aim is to demonstrate something more useful for
production
• systemd credentials management?
• OAuth?

32

