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About me

• Linux user/developer since 1994
• Embedded Linux developer since 2000
• Principal Software Engineer at Konsulko Group since 

2014
• Working on AGL on contract since 2016

• Yocto Project maintenance
• Demo development, integration, and maintenance
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Agenda

• AGL CAN services pre-Marlin
• AGL CAN services today?
• Vehicle Signaling Schema (VSS), Vehicle Information 

Server (VIS), and KUKSA.val
• VSS/VIS Examples
• CAN to VSS Configuration
• VSS Client Example: agl-service-hvac
• Future development
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CAN Services pre-Marlin

• In the legacy application framework vehicle signaling 
was enabled with:
• agl-service-can-low-level
• agl-service-signal-composer

• API bindings developed by IoT.bzh for AGL
• Used in the demo platform to implement dashboard, 

HVAC, and steering wheel demonstrations
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agl-service-can-low-level

• OpenXC XML-based CAN signal definitions
• OpenXC was a Ford open-source project
• No obvious user community

• Code generator to create signal definitions plugin for 
API service
• Based on a couple of OpenXC libraries

• API with signal subscription, write, etc.
• Some degree of J1939 and ISOTP support

• Not fully exercised in upstream AGL
• ISOTP not enabled by default in build
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agl-service-signal-composer

• Service to abstract signals from multiple sources
• CAN, GPIO, etc.

• Configuration via JSON files
• Some provision for runtime loading of configuration

• Plugin architecture and signal processing heavily tied 
to legacy application framework architecture
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AGL CAN Services Today? 

• During the discussions around replacing the legacy 
application framework there was no obvious 
candidate to replace agl-service-can-low-level
• AGL members all have their own implementations
• No FOSS project in the space with a significant userbase

• No desire to invest the effort to build a similar API 
without member engagement
• Focus on technology demonstrations using Linux 

SocketCAN
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AGL CAN Services Today? (continued) 

• Investigation in 2021 found emerging Vehicle Signal 
Specification (VSS) and Vehicle Information Service 
(VIS) Server standards

• Initial investigation suggested that a VIS server would 
provide capabilities similar to 
agl-service-signal-composer

8



VSS

• Vehicle Signal Specification
• Open source project started under COVESA

• https://github.com/COVESA/vehicle_signal_specification
• Developed by BMW, Volvo, Bosch, JLR, etc.
• Hierarchical signal schema in JSON

• Other formats also possible
• Schema currently at version 3.0
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VISS

• Vehicle Information Service (VIS) Server
• Open source project started under COVESA
• Developed by BMW, Volvo, Bosch, JLR, etc.
• Standardization process underway with W3C

• https://w3c.github.io/automotive/vehicle_data/vehicle_
information_service.html

• Websocket API to access VSS signals
• Reference implementation in Go

• https://github.com/w3c/automotive-viss2
• Also an implementation in C++, KUKSA.val
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KUKSA.val

• https://github.com/eclipse/kuksa.val
• Primarily developed by Bosch, with contributions 

from others
• Under active development

• Extends VISS with a gRPC version of the API
• JSON web token (JWT) authorization mechanism
• Python and Go client libraries, with examples
• Example feeder clients to push signal data

• Implemented in Python using client library 
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KUKSA.val (continued)

• Provides mechanism for adding new signals via 
overlay JSON files
• Used in AGL demo for steering wheel switch and a few 

other signals
• See: 

https://git.automotivelinux.org/AGL/meta-agl-demo/tre
e/recipes-connectivity/kuksa-val/kuksa-val-agl/00-agl_vs
s_overlay_2.2.json?h=needlefish
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KUKSA.val Feeders

• DBC feeder
• Pushes selected CAN data to configured VSS signals
• Uses DBC (CAN database) file for CAN signal definitions

• DBC format comes from Vector, but is documented
• YAML configuration file for CAN to VSS signal mapping

• GPS feeder
• Pushes location data from gpsd  

• Replay feeder
• Can be used to replay a stream of VIS updates
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VSS Example

• ABS error signal (Vehicle.ADAS.ABS.Error):
"Error": {
  "datatype": "boolean",
  "description": "Indicates if ABS incurred 
an error condition. True = Error. False = No 
Error.",
  "type": "sensor",
  "uuid": "cd2b0e86aa1f5021a9bb7f6bda1cbe0f"
},
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VSS Example Breakdown

• Data types
• boolean, float, integer, unsigned integer, string

• Signal types
• sensor = input
• actuator = output

• In VIS specification sensors are read-only!
• However, KUSKA.val allows writing to sensors to enable 

more flexible broker-like architectures
• KUKSA.val also adds the concept of target values for 

actuator signals to separate current versus target values
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VIS Get Example

• See more at 
https://w3c.github.io/automotive/vehicle_data/vehicle_infor
mation_service.html#message-structure

• Request
{

"action": "get",
"path": 

"Signal.Drivetrain.InternalCombustionEngine.RPM",
"requestId": "8756"

}
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VIS Get Example (continued)

• Reply
{
"action": "get",
"requestId": "8756",
"value": 2372,
"timestamp": 1489985044000

}
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CAN to VSS Configuration
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DBC Feeder Configuration

1. CAN signal configuration in DBC file
2. CAN signal to VSS signal configuration in 

mapping.yaml
3. DBC feeder configuration in .ini file
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CAN Signal DBC configuration

• Create with Vector's tools
• Create by hand

• https://www.csselectronics.com/pages/can-dbc-file-dat
abase-intro

• https://docs.openvehicles.com/en/latest/components/v
ehicle_dbc/docs/dbc-primer.html

• AGL using: 
https://git.automotivelinux.org/AGL/meta-agl-demo
/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feed
er/agl-vcar.dbc?h=needlefish
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CAN to VSS configuration

• DBC feeder mapping of CAN signal from DBC file to 
VSS signal

• Some simple transforms possible: value mapping, 
math (e.g. for scaling), see:
https://github.com/eclipse/kuksa.val.feeders/tree/m
ain/dbc2val#usage-of-the-file-mappingyml

• AGL using: 
https://git.automotivelinux.org/AGL/meta-agl-demo
/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feed
er/mapping.yml?h=needlefish
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DBC Feeder .ini Configuration

• DBC feeder configuration file to specify:
• DBC file
• mapping yaml file
• CAN device
• KUKSA.val server location
• KUKSA.val authorization token

• AGL using: 
https://git.automotivelinux.org/AGL/meta-agl-demo
/tree/recipes-connectivity/kuksa-val/kuksa-dbc-feed
er/config.ini?h=needlefish
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DBC Feeder config.ini
[general]

# use case:

# switch between databroker and kuksa

# default kuksa

usecase = kuksa

# VSS mapping file

mapping=/etc/kuksa-dbc-feeder/mapping.yml

[kuksa_val]

# kuksa VSS server address

server=wss://localhost:8090

# JWT security token file

token=/etc/kuksa-dbc-feeder/dbc_feeder.json.token

[can]

# CAN port

port=can0

#Enable SAE-J1939 Mode. False: ignore

j1939=False

# DBC file used to parse CAN messages

dbcfile=/etc/kuksa-dbc-feeder/agl-vcar.dbc
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Using Your Own Configuration?

• For testing during development, perhaps start by 
editing files in /etc/kuksa-dbc-feeder on target

• To apply new configuration for your own demos, 
either:
• Potentially submit change against meta-agl-demo 

upstream
• Replace configuration files with a bbappend against 

kuksa-dbc-feeder if you have your own local layer
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VSS Client Example: 
agl-service-hvac
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agl-service-hvac

• In legacy application framework provided a simple 
temperature and fan speed API
• Used by the Qt demo HVAC application
• Originally used SocketCAN directly to drive HVAC 

controller
• Was converted to use agl-service-can-low-level API

• With the removal of the application framework, code 
leveraged to implement a new service backend for 
VSS HVAC signals
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VSS HVAC Schema

• VSS includes a full set of HVAC signals
• 4 rows
• left and right sides
• fan speed and direction
• temperature

• Example signals:
• Vehicle.Cabin.HVAC.Station.Row1.Left.FanSpeed
• Vehicle.Cabin.HVAC.Station.Row2.Right.Temperature
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Implementation

• https://git.automotivelinux.org/apps/agl-service-hvac/
• Currently WebSocket client via Boost library

• Plan is to migrate to KUKSA.val gRPC API
• Listens for Row1 Left and Right fan speed and 

temperature actuator changes
• Pushes fan speed updates out to HVAC controller via 

CAN
• Switched back to doing direct SocketCAN writes

• Pushes temperature updates out to LEDs in demo 
unit via GPIO

28

https://git.automotivelinux.org/apps/agl-service-hvac/


agl-service-hvac Source 
Walkthrough
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Future Development
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CES 2023 Development

• Potentially convert agl-service-hvac,  
agl-service-audiomixer, and libqtappfw client to the 
KUKSA.val gRPC API

• The steering wheel demonstration has been 
converted from LIN to CAN, finish integration
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Post-CES Plans

• Complete transition to KUKSA.val gRPC API
• Investigate options for authorization token handling

• Currently installing with applications during build as 
stopgap

• Aim is to demonstrate something more useful for 
production 
• systemd credentials management?
• OAuth?
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